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Abstract 
We examine the distribution of retail sales for a retail chain in the Houston market using 

a spatial gravity model. Unlike previous empirical studies, our approach models spatial 
dependencies among both consumers and retailers. The results show that both forms of 
spatial dependence exert statistically and economically significant impacts on the estimates 
of parameters in retail gravity models. Contrary to the suggestions of Gautschi (1981) as well 
as Eppli and Shilling (1996), our results show the importance of the distance parameter in 
retail gravity models may be greatly understated. Thus, ignoring spatial dependence may lead 
to overestimation of the deterministic extent of trade areas, and underestimate the importance 
of good locations. 

 
KEYWORDS: spatial autoregression, spatial statistics, spatial econometrics, gravity 

model, trade area. 
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I. Introduction 

When considering opening a new store, retail chain store executives take a holistic view 

of market performance across their entire store network. In particular, they wish to avoid 

opening a profitable store at the expense of existing stores. To avoid such a loss, executives 

need the spatial distribution information of customers and competitors to accurately define 

trade areas for site selection. In addition, managers of individual stores can use the spatial 

distribution of customers and competitors to promote sales. From an overall market 

perspective, the technology of forecasting sales can affect the location premia of retail 

properties. 

We apply retail gravitation notions to examine empirically the spatial distribution of 

retail sales.1 Over seventy years ago Reilly (1931) published his seminal proposition, known 

as “the law of retail gravitation.” Retail gravity models draw an analogy with Newton’s 

gravitational law to account for human behaviors related to shopping activities. In retail 

gravity models, various store features such as size attract customers, just as larger 

astronomical bodies have greater gravitational force. Distance between the customers and the 

store diminishes this attraction, just as gravity diminishes with distance.  

Many studies have examined empirically this concept of retail gravitation.2 Nevertheless, 

the literature often differs on the importance of the distance among retailers and consumers 

(Mejia and Benjamin, 2002). In particular, Gautschi (1981) as well as Eppli and Shilling 

(1996) suggest that the distance parameter may be significantly overstated in previous retail 

gravity research. 

However, existing studies of retail gravity assume independence among errors after 

controlling for distance among customers and retailers. Since spatial dependence pervades 

other forms of real estate data, it seems reasonable to examine retail data for symptoms of 

                                                 
1 Hardin and Wolverton (2001) provide evidence that retail gravitation affects rental rates. 
2 Examples of these studies are Gautschi (1981), Okoruwa, Terza, and Nourse (1988), and Okoruwa, Nourse, and 
Terza (1994), and Eppli and Shilling (1996). 
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spatial dependence. To do so, we estimate a retail gravity model with explicit spatial 

dependence.3 In particular, we model the spatial dependencies with a spatial simultaneous 

autoregressive error process (Ord, 1975) among both consumers and retailers.  

Our results confirm the importance of modeling both forms of spatial dependence in a 

retail-gravity model. When the spatial dependence is explicitly taken into account, the 

estimated parameters of variables pertaining to consumers and retailers change their 

magnitudes considerably, and many reverse their signs. In the case of store size, the 

parameter estimate goes from an implausible statistically significant negative value under 

OLS to a more plausible statistically significant positive value after allowing for spatial 

dependence. Compared with the spatial error model, OLS significantly underestimates the 

magnitude of the distance parameter for these data. Contrary to the suggestions by Gautschi 

(1981) as well as Eppli and Shilling (1996), the results show the importance of the distance 

parameter may be materially understated due to the inappropriate assumption of error 

independence. The inappropriate assumption of independence may lead to overestimation of 

the deterministic extent of trade areas for retail stores, and thus understate the importance of 

good locations. 

The rest of this paper is organized as follows: Section 2 discusses retail gravitation and 

spatial dependence, section 3 describes retail sales data and empirical methods, section 4 

presents empirical results; and section 5 concludes with the key results. 

II. Retail Gravitation and Spatial Dependencies 

Social scientists have drawn an analogy between the spatial interactions of individuals 

and Newton’s law of gravity in physics. Over seventy years ago, Reilly (1931) formally 

applied the Newton’s gravity concept to retail geography, and many models of shopping 

                                                 
3 Porojan (2001) applied spatial statistics to estimate gravity models of international trade flows. Note, this provides 
a simpler scenario since each country is both an origin and destination. Thus, modeling spatial dependence for 
origins also models spatial dependence for destinations in trade studies. 
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behavior have been developed based on the concept of retail gravitation.4 Many of these 

models relate the interaction (shopping trips or expenditures) between retail store b and 

consumer c  (denoted by bcZ ) to the characteristics of store b (denoted by bm ), the 

characteristics of consumer c  (denoted by cm ), and the separation measurement between b  

and c (denoted by bcd ) as in Equation (1), 

 b c d
bc b c bcZ m m dβ β βκ=  (1) 

where κ  is a constant, and bβ , cβ , and dβ  are parameters to be estimated.5 

Many earlier studies included only store size and distance in their gravity models.6 

Examples include Huff (1965) as well as Lakshmanan and Hansen (1965). Using survey data 

of shopping trips, Gautschi (1981) calibrated Huff’s variation of Equation (1). He suggested 

that previous studies omitting other retail center variables might overstate the distance 

parameter in retail gravity models. Stanley and Sewall (1976) calibrated Huff’s variation on 

single stores in a retail chain. Similar to Kolter (1971), Stanley and Sewall (1976) did not 

find that store size contributed significantly to estimates of store patronage. Both Stanley and 

Sewall (1976) as well as Kolter (1971) conclude that Huff’s model is of limited value in 

estimating sales potential for single stores. Obtaining actual sales data, Eppli and Shilling 

(1996) calibrate Lakshmanan and Hansen’s (1965) variant with an interactive approach and 

OLS (ordinary least squares). They find that store location (proximity to the competition) is 

of little importance and conclude that the distance parameter for retail gravity models may be 

significantly overstated.7  

More recent research incorporates more characteristics of stores and consumers in retail 

gravity models. For example, Okoruwa, Terza, and Nourse (1988) include retail center 

variables such as age and type, as well as economic and demographic characteristics of 
                                                 
4 See Brown (1992) for a list of studies of retail gravity models. 
5 Gravity models in this form can be applied to all sorts of spatial interaction behavior such as retail shopping, and 
population migration (Fotheringham and Webber, 1980).  
6 See Okoruwa, Terza, and Nourse (1988) for a list of such studies. 
7 In most retail gravity models, location means the distance among consumers and retailers. 
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shoppers in estimating shopping trip frequencies obtained from a survey. Okoruwa, Terza, 

and Nourse (1988) calibrate Equation (1) with a Poisson regression. Contradicting the typical 

hypothesis of retail gravity models, they find that retail center size exerts a negative 

influence on patronization rates.  

While the gravity model incorporates space via a distance variable, this may not provide 

a sufficiently rich means of modeling interdependence among customers and retailers. For 

example, spatial dependence of errors among stores could arise due to omission of variables 

such as accessibility (e.g., turn lanes into centers or lights), visibility of signage, and retail 

demand externalities within a shopping center arising through clustering of stores. Clustering 

among heterogeneous retailers facilitates multi-purpose shopping behavior of consumers to 

reduce total travel costs, and clustering of homogeneous retailers facilitates comparison-

shopping behavior (Eppli and Benjamin, 1994).8 Studies have established the importance of 

these retailer and consumer behaviors in the choice of retail shopping trips (Eppli and 

Benjamin, 1994). Nevertheless, most of previous empirical studies did not incorporate these 

behaviors in retail gravity models.9  

Spatial dependence of errors among consumers could arise due to clustering of 

consumers with similar circumstances (e.g., individuals living in heavily shaded areas might 

not spend as much at garden centers), common traffic routes, and sharing of information.  

Previous studies did not incorporate such dependence in retail gravity models. Modeling 

the dependence offers the possibility of better parameter estimation, correct inference (OLS 

standard errors are biased downwards in the presence of positive spatial dependence), and 

improved prediction (Cressie, 1993). 

III. Retail Sales Empirical Data, Methods, and Model 

                                                 
8 Most of gravity models assume that consumers shop from fixed points (e.g., their places of residence) and buy just 
one type of good or service per shopping trip (Carter, 1993). 
9 One exception is Nevin and Houston (1980) who include multipurpose shopping opportunities in their gravity 
model. 
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Section A describes the retail sales data and census data employed in this study. Section 

B presents the SAR (simultaneous autoregressions) error model, section C provides 

information on the spatial dependence specification, section D gives the relevant likelihood 

function, while E shows the empirical model.  

A. Retail Sales Data and Census Data 

A retail consultant provided individual store and consumer data of a retail chain in the 

Houston market under a non-disclosure agreement preventing the release of specific data. 

The consumer data are for each household who shopped at a particular store. The variables 

are the total dollar amounts each household spent at each individual store for the year 2000, 

and the block group where each household resides. We aggregate the data to the block-group 

level and calculate retail sales in a block group for each store ( bcSales ). The individual store 

variables are total store sales in year 2000 ( store sales) and in year 1999 (  lagged store sales ), 

store size in square feet (  store size ), type of shopping center where each store resides 

( ,strip ,pad or mall ), age of the shopping center ( center age ), as well as longitude and 

latitude of each store.10 

We supplement the retail sales data with 1990 census data and 1998 census estimates. In 

particular, we obtain census data relevant to the total potential expenditure for a block-group. 

The data are median medical supplies expenditure ( medical supp ), median household 

income (  med inc), median house value ( med val ), median house age (  house age), total 

population (  tot pop ), land area ( area land ), median age ( med age), white population 

(  pop white ), and female population ( females). Median house value, median house age, and 

land area are for 1990, while the other data are for 1998. We also obtain the longitude and 

latitude of each block-group to calculate the distances among retailers and consumers. 

Specifically, we compute the distance that consumers travel from their block group to the 

                                                 
10 A strip (linear) shopping center consists of a line of stores with a pedestrian walk along the storefronts. A pad 
(cluster) center is a group of freestanding retail sites linked together by pedestrian walkways. 
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stores ( bcdistance ). Research has revealed that shopping trips may not be home based (Brown, 

1992). Therefore, we also obtain average travel time to work ( travel time ) for 1990 from 

1990 census data to take into account shopping trips originating from places of employment. 

Geographically, the Houston market covers Baytown, Friendswood, Houston, Humble, 

Lake Jackson, Sugar Land, and Texas City. The retail chain has 14 stores in the Houston 

market. Twelve stores are located in shopping malls, one in a strip shopping center, and one 

in a pad-type shopping center.  

Table 1 presents the descriptive statistics of the data used in this study. On average a 

store had $1,846 of retail sales in a block group. Retail sales in a block group vary widely 

from only $5 to $113,323. This variation indicates that retail sales do not uniformly originate 

over space. The distance among retailers and consumers is measured using the Euclidean 

metric. Over fifty percent of the consumers traveled less than 10.5 miles from their residence 

to the store where they shopped. Some consumers lived only 0.15 mile away from the store 

they patronized while others resided in distant locations.  

For the 14 stores in our study, total store sales were stable over year 1999 and year 2000. 

A store on average generated about $1.3 million in annual sales. The stores generated sales 

between about $0.5 million and $2 million. The average store size was 4,579 square feet. The 

smallest store had 3,157 square feet, and the largest store had 6,612 square feet. The average 

shopping center age was 10 years. The newest center opened 5 years ago, and the oldest 

center opened 15 years ago.  

There are 2,977 block-groups in Texas whose residents shopped at the stores in the study 

during 2000. Residents in a block group spent on average about $62,000 on medical supplies 

in 1998. The median household income was $45,707 a year. The median house value was 

about $71,000. Residents on average spent 25 minutes traveling from their home to work. On 

average a block group has 1,837 residents and 10 square kilometers in area. The median age 

of a resident was of 34 years old. A block group on average has 1,408 white residents and 

928 female residents.  
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B. A SAR in Errors model 

We describe a SAR in errors model, following the notation of Pace and Gilley (1997), 

 ( ) ( )I D Y I D Xα α β ε− = − +  (2) 

where Y  represents a 1n ×  vector of observations on the dependent variable, the matrix X  

contains n observations on k independent variables, α  is a scalar parameter, D  is an n n×  

spatial weight matrix, and ε  is an 1n ×  vector of error terms. When errors exhibit spatial 

autocorrelation, a SAR in errors model partially differences each variable with the value of 

that variable at nearby observations ( ,DY DX ). After transforming both sides, the errors are 

normal iid. This model is equivalent to: Y Xβ ε= +  where ~ (0, )Nε Ω  and 

( ) ( )1 I D I Dα α− ′Ω = − − . 

In the SAR in error model, 0α >  indicates a positive spatial dependence. This implies 

that errors of same sign are geographically clustered together. On the other hand, a 0α <  

implies a negative spatial dependence, and this implies that the errors of the opposite sign are 

clustered together geographically. When 0α = , the SAR in errors model reduces to an OLS 

model. In a retail context, similar consumer populations and shopping environments may 

result in a positive spatial dependence among consumers. Individual stores sharing a similar 

retailing environment with other stores may lead to a positive spatial dependence among 

stores in a retail chain. 

To prevent an observation from directly predicting itself, D  has zeros on its diagonal. 

To facilitate interpretation, each row of D  sums to 1. To ensure the stability of the entire 

error process, the spatial autocorrelation parameter, α , is restricted to be less than one, and 

since negative dependence seems unlikely, we restrict α  to the interval [0,1).11 These 

assumptions are summarized in the following: 

                                                 
11 This assumption is for convenience. If 0,α < the estimates should lie on the boundary 0.α =  We did not 
observe such a boundary solution. 
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C. Specification of the Spatial Weight Matrix 

To model the spatial dependence among stores and consumers, we specify a spatial 

weight matrix (1 ) ,D wC w S= + −  where C  and S  are weight matrices for consumers and 

stores respectively, and 0 1.w≤ ≤  When 1,w =  D  reduces to .C  When 0,w =  D  reduces 

to .S  Empirically, we search for the optimal w  over [0.00, 0.01,…1.00]. 

Since D  is a n n×  matrix, a straightforward dense specification of this would quickly 

result in intractable computations. Accordingly, we take a route that preserves sparsity 

among the components of D . This permits use of this approach in both large and small 

markets. 

We form C  using the approach of nearest neighbors with geometrically decaying 

weights. Under this scheme, the weight given to each customer depends on the proximity of 

each customer relative to all other customers. To make this feasible, we consider only the m 

nearest customers (nearest neighbors) to each customer. To make this more flexible, we 

allow for a geometrically declining weight for more distant neighbors. 

Let ( )hN  represent an n by n matrix where ( ) 0h
ijN >  when observation j is the hth nearest 

neighbors for observation i ( 1,2,h m= " , , 1,2,i j n= " , i j≠ ) and let ( ) 0h
ijN =  otherwise. 

Thus, (1) (2) ( ), , , hN N N"  represents a sequence of neighbor matrices. Let ρ  represent the rate 

of geometric decay of weights such that the h th closest neighbors have a weight of hρ  

where 0 1.ρ≤ ≤  Define C  as, 

 ( )

1 1

m m
h h h

h h

C Nρ ρ
= =

= ∑ ∑  
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and by construction each row sums to 1 and has zeros on the diagonal. Later, we search for 

the optimal C  by varying m  for 36 values over [1, 2…36] and varying ρ  for 101 values 

over [0.00, 0.01…1.00]. 

Turning to means of modelling spatial dependence among stores, we create S  as a 

product of sparse matrixes to overcome the computer memory requirement. We can divide 

this into five steps. The first step forms the Delaunay triangularization among stores. The 

Delaunay triangulation is the geometric dual of the Voronoi diagram that depicts the 

geometric expression of connections among contiguous stores (Calciu and Salerno, 1997).12 

Each store at a Delaunay triangle serves similar consumer populations who tend to live 

together. With this approach, let 1ijV =  when observations i  and j  share contiguous 

triangles ( )i j≠  and let 0ijV =  otherwise. Thus, V  represents a s sn n×  weight matrix of 

Delaunay triangulation for sn  stores.  

The second step involves the row-standardization of V . Let  

 
1

sn

i ij ij
j
i j

G V V
=
≠

= ∑   

and hence [1 ] [1 ]
s sn nG = , where [1 ]

sn  represents a vector of ones.  

The third step involves the aggregation of customers at each store. Let 1ijA =  when 

customer i  shops at store ,j  and zero otherwise. Therefore, A  is a 0, 1 matrix whose 

dimension is .sn n×   

For the fourth step, we can standardize A′  as well. Let R  represent a s sn n×  diagonal 

matrix with elements equal to the reciprocal of the sum of the columns of A . In which case, 

RA′  will be row-stochastic, and thus [1] [1]RA′ = . Now forming S  as a product of these 

matrices,  

 ( )S AG RA′=  

                                                 
12 The Voronoi diagram has the property that for each store every point in the region around that store is closer to 
that site than to any of the other stores. 
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yields a feasible means of quantifying spatial averages at the customer level.  

To make this more intuitive, consider some variable 1n ×  vector v  which might 

represent customer house values, a measure of wealth. The 1sn ×  vector RA v′  computes the 

average customer house price for each store (aggregates from n  customers to sn  stores), the 

1sn ×  vector GRA v′  computes the spatial average of customer house values at competing 

stores for each store, and the sn n× matrix A  redistributes the store level data back to the 

customer level. Thus, AGRA v′  represents the average house values of customers that 

shopped at nearby stores. If v  denotes an error, AGRA v′  would measure the average errors 

at nearby stores for each customer. If the independent variables underpredicted the 

performance of nearby stores for some set of stores, AGRA v′  would be positive for 

customers who shopped at the store, and the use of this information could improve model 

predictions. 

With this relationship, we can perform operations with S  without needing to store an 

n n×  matrix. Instead, for some v  we can first form RA v′ , a 1sn ×  vector, multiply this by 

an s sn n×  matrix, and then redistribute this result to each observation via the sn n×  matrix A . 

None of these operations requires much time or memory. As a result, in our actual 

computation, (1 )D wC w AGRA′= + −  instead of (1 ) .D wC w S= + −  

Here is a numerical example showing how to express S  with G  and .A  Assume we 

have following matrixes for 4 retail sale observations for 3 stores: 

 

1 0 0
0.5 0.5 0 0 0 1 /2 1 /2

1 0 0
,  0 0 1 0 ,  1 /2 0 1 /2

0 1 0
0 0 0 1 1 /2 1 /2 0

0 0 1

A RA G

 
    
     ′= = =    
        

 

,  

then, 
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0 0 0.5 0.5
0 0 0.5 0.5

.
0.25 0.25 0 0.5
0.25 0.25 0.5 0

S

 
 
 =
 
 
 

  

D. Maximum Likelihood Computations 

The SAR in error model in (2) and (3) has the following profile log-likelihood function, 

 ( )( )1( ) ln ln .
2

L I D SSEα κ α α= + − −  (4) 

where ( ) ( ) ( ) ( )( )SSE Y X I D I D Y Xα β α α β′ ′= − − − −  and κ  represents a constant (Pace, 

Barry, Slawson, and Sirmans, 2002). We maximize the log-likelihood by computing 
Equation (4) for 100 values of α  over [ ]0.00,0.01,....0.99 .  

To overcome the computer memory requirement, we implement the log-determinant 

estimator of Barry and Pace (1999) to compute estimates of ln I Dα− . In particular, 

ln I Dα− can be expanded in a power series as follows: 

 
( )

1

tr
ln

r r

r

D
I D

r
α

α
∞

=

−
− = ∑  

Using a finite approximation of the above expansion together with ( )u MuE tr M
u u
′  = ′ 

 for 

any real n n×  matrix M  and n  by 1 column vector ( )0, ,nu N I∼  Barry and Pace (1999) 

show a computationally simple way of estimating the log-determinant, and provide 

confidence limits for the estimated log-determinant.  

Note, computation of the log-determinant only requires repeated multiplication of a D  

by a vector u  since 2D u  equals ( )D Du , 3D u  equals ( )2D D u , and so forth. For sparse D  

with number of elements proportional to n , each matrix-vector calculation uses ( )O n  

operations. Since (1 )D wC w AGRA′= + − , Du  just requires a series of low-cost 

computations, and this applies to rD u  for 1r q= …  as well. 
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In terms of computing the Monte Carlo estimate of ln I Dα− , we set 98q =  and use 

30 independent realizations of u . 

E. The Empirical Model 

We rewrite the retail gravity models, Equation (1), in log form and empirically model 

retail sales as: 

 ln( )bc bcSales Xβ ε= +  (5) 

where [ ],bc b cX X X X= # #  [ ]1, ln( ) ,bc bcX distance= bX  = a vector of variables pertaining to 

store ,b  cX  = a vector of variables pertaining to shoppers’ area ,c  and bcε  represents an error 

term.  

The matrix bX  contains five variables of store characteristics. The five variables are 

ln(  ),lagged store sales  ln(  ),center age  ln(  )store size  as well as two store-type dummies, 

stripand .pad  The matrix cX  contains nine variables in log form relevant to total potential 

expenditure and average travel time to work in log form for block group .c  Specifically, the 

10 variables are ln(  ),medical supp  ln(  ),med inc  ln(  ),med val  ln(  ),house age  ln(  ),tot pop   

ln(  ),area land ln(  ),med age  ln(  ),pop white  ln( ),females  and ln(  ).travel time  

To model the spatial dependence among stores and consumers, we fit Equation (5) with 

a SAR in error model using Pace and Barry’s (2002) spatial statistics toolbox 1.1. 

Specifically we assume 1(0,[(1 ) (1 )] ).bc N D Dε α α −′− −∼  

In summary, we hypothesize the signs for the variables in Equation (5) are positive signs 

for ln(  ),lagged store sales  ln(  ),store size  ln(  ),medical supp  ln(  ),med inc  ln(  ),med val  

ln(  ),tot pop  ln(  ),area land  ln(  ),med age  ln(  ),pop white ln( )females , and negative for 

ln( ),bcdistance  ln(  ),center age  ln(  ),house age ln(  )travel time , ,strip  and .pad  

IV. Empirical Results 

To understand the importance of spatial dependence, we calibrate four models that 

consider different components of spatial dependence among consumers and stores. The first 



 14

model ignores spatial dependence. The second model considers spatial dependence among 

stores. The third model considers spatial dependence among consumers. The fourth model 

considers both spatial dependence among stores and consumers. Table 2 presents the 

calibration results of Equation (5). 

The first model calibrates the gravity model with OLS. As hypothesized, the distance 

variable has a significant coefficient of –0.818, with signed root deviance (SRD) –57.346.13 

This coefficient is the constant distance elasticity of retail sales, which measures the 

proportional change in retail sales with respect to a small proportional change in distance. In 

particular, the coefficient here predicts a 0.818% decrease in a store’s sales in a block group 

when the distance between the store and block groups increases 1%. 

The strip shopping center indicator variable has a significant and negative coefficient, as 

hypothesized. This result matches those of Sirmans and Guidry (1993) as well as Oppewal 

and Timmermans (1999). A mall has more aesthetically appealing design and usually 

provides more protection to shoppers from the weather than other types of shopping centers 

(Sirmans and Guidry, 1993). Oppewal and Timmermans (1999) find that design influences 

consumer perception of shopping centers, and thus affects retail sales. However, several 

other variables have significant coefficients with signs opposite to those hypothesized by 

retail gravity. For variables pertaining to consumers, median household income and total 

population of a block group have significant and negative coefficients. Their signs are 

inconsistent with our hypotheses. For variables pertaining to retail stores, store size and 

shopping center age have significant coefficients with signs inconsistent with our hypotheses. 

Shopping center age has a positive coefficient while hypothesized to have a negative 

coefficient. In addition, store size has a negative coefficient while hypothesized to have a 

positive coefficient.  

                                                 
13 The signed root deviance or SRD equals the square root of likelihood ratio statistic with a sign of its coefficient. It 
has an interpretation similar to a t-ratio. Squaring the SRD yields back the likelihood ratio statistic. We employ it to 
avoid scaling problems. 
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The second model only examines the spatial dependence among stores. The distance 

variable increases slightly from –0.818 to –0.815 and remains significant with a SRD –

57.204. Although lagged store sales changes its coefficient from a negative value to the 

hypothesized positive value, the coefficient is insignificant. The dummy for a pad shopping 

center changes to have the hypothesized negative coefficient but remains insignificant. Store 

size still has a significant and negative coefficient. However, its SRD decreases near 43% in 

absolute value from –9.378 to –5.355. The spatial dependence among stores does not change 

either the signs or the significances of the coefficients of variables pertaining to consumers. 

Nevertheless, the signed root deviances for median household income and total population of 

a block group decrease 3.46% and 34.84% in absolute value respectively. 

The third model considers only the spatial dependence among consumers. The distance 

estimated elasticity dramatically decreases by 68.34% (from –0.815 in the second model to –

1.372 in the third model). The associated SRD increases more than 19% in absolute value 

from –57.204 to –68.304. In addition, spatial dependence among customers materially affects 

the estimated parameters. The coefficients of median household income and total population 

of a block group become insignificant, but still have signs opposite to our hypotheses. As a 

result, now there are no consumer variables having significant coefficients with signs 

opposite to our hypotheses. Median house age, median age of consumers, female population, 

and average travel time to work change to have insignificant coefficients. Nevertheless, 

median medical supplies expenditure changes to have a positive and significant coefficient as 

hypothesized.  

The spatial dependence among consumers also influences store estimated parameters. 

Lagged store sales, a proxy for store management, changes its coefficient from insignificant 

to significant positive, as hypothesized. This coefficient is consistent with Black’s (1966) 

argument. More sales enable a store to carry a greater variety of products, improve its 

services to customers, and compete with other stores. In addition, lagged store sales may 

capture the effect of store age on better management or other unobservables. Start-up 
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problems may adversely affect sales for stores in new locations (Hise, Kelly, Gable, and 

McDonald, 1983). Stores in business longer should have overcome the start-up problems and 

have larger store sales. All these effects can increase the attractive power of a store. Store 

size still has a significant and negative coefficient. Nonetheless, it increases from –0.888 to –

0.557, and its SRD decreases 1.21% in absolute value from –5.355 to –5.290. However, the 

dummy for a pad shopping center changes to have a significant and positive coefficient. This 

coefficient is not consistent with Sirmans and Guidry (1993) as well as Oppewal and 

Timmermans (1999).  

The fourth model models both spatial dependence among stores and consumers. 

Compared to the third model, the distance elasticity slightly decreases another 0.36% from –

1.372 to –1.377. The associated SRD increases another 2.07% in absolute value from –

68.304 to –69.721. The next most important variable, store size, in retail gravity models now 

has a significant coefficient with hypothesized sign. Its coefficient changes to significant and 

positive in Model 4 from significant and negative in Models 1, 2, and 3. The coefficient 

changes from –0.557 in Model 3 to 0.490 in Model 4. The SRD for store size changes from –

5.290 to 4.021. The dummy for a pad shopping center changes to have a significant and 

negative coefficient, as hypothesized. In addition, center age changes to have a negative 

coefficient. Although the coefficient is not significant, it has the hypothesized sign. This sign 

agrees with Sirmans and Guidry’s (1993) as well as Gatzlaff, Sirmans, and Diskin’s (1994) 

arguments. They argue that older shopping centers generally suffer functional or physical 

deficiencies and have an inappropriate tenant mix due to changing markets, and thus have 

less attractive power. The coefficient for lagged store sales increases about 58% in 

magnitude from 0.190 to 0.300. Its SRD also increases by over 50% from 4.644 to 7.012. 

The coefficients of total population of a block group become positive, as hypothesized, but 

remain insignificant. Median household income still has an insignificant and negative 

coefficient. However, this may not seem too surprising given the model already contains 

medical supply expenditures, a more direct measure of medical spending potential than 
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income. Nevertheless, the coefficient decreases more than 97% in absolute value from –

0.038 to -0.001. The SRD for the median household income also decreases more than 97% in 

absolute value from –0.895 to –0.024. 

In addition to producing plausible estimated parameteers, model selection criteria also 

show models perform better when incorporating both forms of spatial dependence. The 2R  

increases from 0.386 for the first model to 0.548 for the fourth model. The log-likelihoods 

also show that the fourth model outperforms the other three models. In fact, the likelihood 

ratio statistic between Model 1 and Model 4 is about 2,005.  

V. Conclusions 

Gravity-type models have been applied to the retail context extensively. However, the 

results have often seemed disappointing. For example, Kolter (1971) found that store size did 

not prove significant in predicting store sales. Both Stanley and Sewall (1976) as well as 

Kolter (1971) conclude the gravity model was of limited value in predicting single store sales. 

However, previous studies have assumed independence among customers and stores. For 

these data, modeling spatial dependence results in far more plausible parameter estimates 

than assuming independence. For example, under independence previous store sales have an 

insignificant, negative effect on future store sales. After modeling spatial dependence, 

previous store sales have significant, positive effect on future store sales. Under 

independence, store size has a significant, negative effect on store sales. After modeling 

spatial dependence, store size has a significant, positive effect on store sales. Under 

independence, center age has a significant, positive effect on store sales. After modeling 

spatial dependence, center age has a insignificant, negative effect on store sales. 

Even the distance variable, the central feature of the gravity model, may not be well 

estimated under independence. Using actual sales for a retail chain in the Houston market 

and modeling spatial dependence among customers and stores, we find that the assumption 

of independent errors can lead to understating the magnitude of the distance parameter by as 
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much as two-thirds. This result implies that previous studies may have overestimated the 

deterministic extent of trade areas as reflected in the distance parameter, and thus have 

understated the importance of good locations.  
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Table 1: Descriptive Statistics 
Variables Label Mean Std Dev. Median Minimum Maximum

Retail sales ($) bcsales  1,846.06 3,827.73 524.00 5.00 113,323.00

Distance (miles) bcdistance  22.29 45.99 10.49 0.15 712.26
Store sales ($) store sales  1,339,666.71 380,706.15 1,315,324.50 505,601.00 2,030,448.00

Lagged store sales ($) lagged storesales 1,324,174.57 383,531.07 1,268,676.50 515,538.00 1,853,128.00

Shopping center age (years) center age  10.36 3.12 10.88 4.87 15.75
Store size (square feet) store size  4,578.79 929.01 4,511.00 3,157.00 6,612.00

Median Medical supplies expenditure ($1,000) medical supp  61.67 42.60 51.00 3.00 782.00
Median household income ($) med inc  45,706.62 24,808.02 39,328.00 11,976.00 150,000.00
Median house value ($) med val  71,301.38 57,253.59 57,100.00 14,999.00 500,001.00

Median house age (years) house age  31.98 11.94 29.00 10.00 61.00
Travel time to work (minutes) travel time  24.53 6.28 24.40 6.90 54.10

Total Population (persons) tot pop  1,837.00 1,007.17 1,627.00 70.00 11,125.00
Land area (0.001 square kilometers) area land  10,428.72 33,201.48 1,125.00 60.00 446,589.00

Median age (year) med age  33.57 6.50 32.70 11.20 75.00

White population (persons) pop white  1,407.99 876.56 1,282.00 5.00 10,135.00

Female population (persons) females  927.87 507.12 826.00 43.00 6,019.00
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Table 2: Retail Gravity Models 
Model 1 Model 2 

Independent variables OLSβ  SRD SARβ  SRD 
ln( )bcdistance  -0.818 -57.346+++ -0.815 -57.204+++ 
ln(  )lagged store sales  -0.007 -0.154 0.054 0.761 
ln(  )center age  0.565 9.638××× 0.514 7.529××× 
ln(  )store size  -1.059 -9.378××× -0.888 -5.355××× 
strip  -0.310 -8.947+++ -0.305 -8.888+++ 
pad  0.006 0.126 -0.016 -0.258 
ln(  )medical supp  -0.030 -0.495 -0.029 -0.470 
ln(  )med inc  -0.113 -3.123××× -0.109 -3.015××× 
ln(  )med val  0.144 3.581+++ 0.153 3.744+++ 
ln(  )house age  -0.358 -7.201+++ -0.346 -6.926+++ 
ln(  )tot pop  -0.360 -2.586××× -0.252 -1.685× 
ln(  )area land  0.189 17.861+++ 0.186 17.476+++ 
ln(  )med age  0.236 2.425++ 0.229 2.349++ 
ln(  )pop white  0.070 4.330+++ 0.064 3.902+++ 
ln( )females  0.509 3.910+++ 0.408 2.868+++ 
ln(  )travel time  -0.683 -11.122+++ -0.683 -11.117+++ 
Intercept 12.700 8.802*** 13.683 6.016*** 
     
w    0  
α    0.040 1.337 
m    34  
ρ    1  
p    30  
q    98  
n  7,983  7,983  
k  17  20  
Log likelihood -36,165.975  -36,165.081  

2R  0.386  0.386  
     

1. w is the weight on the spatial weight matrix for consumers. 
2. α is the spatial autoregression parameter. 
3. m is the number of nearest blocks used in constructing the spatial weight matrix for consumers. 
4. ρ represents 1 minus the rate of geometric decay of weights on neighboring blocks in the spatial weight matrix. 
5. p is the number of trials performed to obtain the Monte Carlo estimates for the log-determinant term.  
6. q is the highest order of power series expansion for the log-determinant term. 
7. SRD stands for signed root deviance that equals the square root of likelihood statistics with a sign of its coefficient.  
8.  * significant at 10% level; ** significant at 5% level; *** significant at 1% level of sign without hypothesis. 
9. × significant at 10% level; ×× significant at 5% level; ××× significant at 1% level of sign counter to hypothesis. 
10. + significant at 10% level; ++ significant at 5% level; +++ significant at 1% level of sign consistent with hypothesis. 
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(Table 2 continued) 
Model 3 Model 4 

Independent variables SARβ  SRD SARβ  SRD 
ln( )bcdistance  -1.372 -68.304+++ -1.377 -69.721+++ 
ln(  )lagged store sales  0.190 4.644+++ 0.300 7.012+++ 
ln(  )center age  0.262 4.958××× -0.079 -1.394 
ln(  )store size  -0.557 -5.290××× 0.490 4.021+++ 
strip  -0.251 -8.424+++ -0.148 -5.065+++ 
pad  0.096 2.347×× -0.112 -2.736+++ 
ln(  )medical supp  0.431 6.049+++ 0.386 5.537+++ 
ln(  )med inc  -0.038 -0.895 -0.001 -0.024 
ln(  )med val  0.186 4.101+++ 0.198 4.398+++ 
ln(  )house age  -0.019 -0.292 -0.051 -0.839 
ln(  )tot pop  -0.170 -1.184 0.003 0.021 
ln(  )area land  0.031 2.259++ 0.049 3.390+++ 
ln(  )med age  0.010 0.098 0.034 0.352 
ln(  )pop white  0.078 3.282+++ 0.064 2.755+++ 
ln( )females  0.163 1.228 0.044 0.333 
ln(  )travel time  -0.104 -1.332 -0.077 -0.997 
Intercept 7.782 5.296*** 2.518 1.573 
     
w  1  0.840  
α  0.870 42.409+++ 0.990 44.777+++ 
m  34  34  
ρ  1  1  
p  30  30  
q  98  98  
n  7,983  7,983  
k  20  21  
Log likelihood -35,264.586  -35,163.504  

2R  0.540  0.548  
     

1. w is the weight on the spatial weight matrix for consumers. 
2. α is the spatial autoregression parameter. 
3. m is the number of nearest blocks used in constructing the spatial weight matrix for consumers. 
4. ρ represents 1 minus the rate of geometric decay of weights on neighboring blocks in the spatial weight matrix. 
5. p is the number of trials performed to obtain the Monte Carlo estimates for the log-determinant term.  
6. q is the highest order of power series expansion for the log-determinant term. 
7. SRD stands for signed root deviance that equals the square root of likelihood statistics with a sign of its coefficient.  
8.  * significant at 10% level; ** significant at 5% level; *** significant at 1% level of sign without hypothesis. 
9. × significant at 10% level; ×× significant at 5% level; ××× significant at 1% level of sign counter to hypothesis. 
10. + significant at 10% level; ++ significant at 5% level; +++ significant at 1% level of sign consistent with hypothesis. 

 


