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Abstract

We examine the distribution of retail salesfor aretail chain in the Houston market using
aspatial gravity model. Unlike previous empirical studies, our approach models spatial
dependencies among both consumers and retailers. The results show that both forms of
spatial dependence exert statistically and economically significant impacts on the estimates
of parametersin retail gravity models. Contrary to the suggestions of Gautschi (1981) as well
as Eppli and Shilling (1996), our results show the importance of the distance parameter in
retail gravity models may be greatly understated. Thus, ignoring spatial dependence may lead
to overestimation of the deterministic extent of trade areas, and underestimate the importance
of good locations.

KEYWORDS: spatia autoregression, spatial statistics, spatial econometrics, gravity
model, trade area.



|. Introduction

When considering opening a new store, retail chain store executives take a holistic view
of market performance across their entire store network. In particular, they wish to avoid
opening a profitable store at the expense of existing stores. To avoid such aloss, executives
need the spatial distribution information of customers and competitors to accurately define
trade areas for site selection. In addition, managers of individual stores can use the spatial
distribution of customers and competitors to promote sales. From an overall market
perspective, the technology of forecasting sales can affect the location premia of retail
properties.

We apply retail gravitation notions to examine empirically the spatial distribution of
retail sales.! Over seventy years ago Reilly (1931) published his semina proposition, known
as “thelaw of retail gravitation.” Retail gravity models draw an analogy with Newton’'s
gravitational law to account for human behaviors related to shopping activities. In retail
gravity models, various store features such as size attract customers, just as larger
astronomical bodies have greater gravitational force. Distance between the customers and the
store diminishes this attraction, just as gravity diminishes with distance.

Many studies have examined empirically this concept of retail gravitation.2 Nevertheless,
the literature often differs on the importance of the distance among retailers and consumers
(Mgiaand Benjamin, 2002). In particular, Gautschi (1981) as well as Eppli and Shilling
(1996) suggest that the distance parameter may be significantly overstated in previous retail
gravity research.

However, existing studies of retail gravity assume independence among errors after
controlling for distance among customers and retailers. Since spatial dependence pervades

other forms of real estate data, it seems reasonable to examine retail data for symptoms of

1 Hardin and Wolverton (2001) provide evidence that retail gravitation affects rental rates.

2 Examples of these studies are Gautschi (1981), Okoruwa, Terza, and Nourse (1988), and Okoruwa, Nourse, and
Terza (1994), and Eppli and Shilling (1996).



spatial dependence. To do so, we estimate aretail gravity model with explicit spatial
dependence.? In particular, we model the spatial dependencies with a spatial simultaneous
autoregressive error process (Ord, 1975) among both consumers and retailers.

Our results confirm the importance of modeling both forms of spatial dependencein a
retail-gravity model. When the spatial dependenceis explicitly taken into account, the
estimated parameters of variables pertaining to consumers and retailers change their
magnitudes considerably, and many reverse their signs. In the case of store size, the
parameter estimate goes from an implausible statistically significant negative value under
OLSto amore plausible statistically significant positive value after allowing for spatial
dependence. Compared with the spatial error model, OL S significantly underestimates the
magnitude of the distance parameter for these data. Contrary to the suggestions by Gautschi
(1981) aswell as Eppli and Shilling (1996), the results show the importance of the distance
parameter may be materially understated due to the inappropriate assumption of error
independence. The inappropriate assumption of independence may lead to overestimation of
the deterministic extent of trade areas for retail stores, and thus understate the importance of
good locations.

The rest of this paper is organized as follows: Section 2 discusses retail gravitation and
spatial dependence, section 3 describes retail sales data and empirical methods, section 4

presents empirical results; and section 5 concludes with the key results.
II. Retail Gravitation and Spatial Dependencies

Social scientists have drawn an analogy between the spatial interactions of individuals
and Newton's law of gravity in physics. Over seventy years ago, Reilly (1931) formally
applied the Newton’s gravity concept to retail geography, and many models of shopping

3 Porojan (2001) applied spatial statistics to estimate gravity models of international trade flows. Note, this provides
asimpler scenario since each country is both an origin and destination. Thus, modeling spatial dependence for
origins also models spatial dependence for destinationsin trade studies.



behavior have been developed based on the concept of retail gravitation.# Many of these
models rel ate the interaction (shopping trips or expenditures) between retail store b and
consumer ¢ (denoted by Z,,.) to the characteristics of store b (denoted by m), the
characteristics of consumer ¢ (denoted by m.), and the separation measurement between b
and c(denoted by d,.) asin Equation (1),
Zy, = wmpemg-dy (D

where x isaconstant, and 5,, 5., and S, are parameters to be estimated.>

Many earlier studiesincluded only store size and distance in their gravity models.6
Examplesinclude Huff (1965) as well as Lakshmanan and Hansen (1965). Using survey data
of shopping trips, Gautschi (1981) calibrated Huff’ s variation of Equation (1). He suggested
that previous studies omitting other retail center variables might overstate the distance
parameter in retail gravity models. Stanley and Sewall (1976) calibrated Huff’ s variation on
single storesin aretail chain. Similar to Kolter (1971), Stanley and Sewall (1976) did not
find that store size contributed significantly to estimates of store patronage. Both Stanley and
Sewall (1976) aswell as Kolter (1971) conclude that Huff’smodel is of limited valuein
estimating sales potential for single stores. Obtaining actual sales data, Eppli and Shilling
(1996) cdibrate L akshmanan and Hansen’ s (1965) variant with an interactive approach and
OLS (ordinary least squares). They find that store location (proximity to the competition) is
of little importance and conclude that the distance parameter for retail gravity models may be
significantly overstated.”

More recent research incorporates more characteristics of stores and consumersin retail
gravity models. For example, Okoruwa, Terza, and Nourse (1988) include retail center

variables such as age and type, as well as economic and demographic characteristics of

4 See Brown (1992) for alist of studies of retail gravity models.

5 Gravity modelsin this form can be applied to all sorts of spatial interaction behavior such as retail shopping, and
population migration (Fotheringham and Webber, 1980).

6 See Okoruwa, Terza, and Nourse (1988) for alist of such studies.

7 In most retail gravity models, location means the distance among consumers and retail ers.



shoppers in estimating shopping trip frequencies obtained from a survey. Okoruwa, Terza,
and Nourse (1988) calibrate Equation (1) with a Poisson regression. Contradicting the typical
hypothesis of retail gravity models, they find that retail center size exerts a negative
influence on patronization rates.

While the gravity model incorporates space via a distance variable, this may not provide
asufficiently rich means of modeling interdependence among customers and retailers. For
example, spatial dependence of errors among stores could arise due to omission of variables
such as accessibility (e.g., turn lanesinto centers or lights), visibility of signage, and retail
demand externalities within a shopping center arising through clustering of stores. Clustering
among heterogeneous retailers facilitates multi-purpose shopping behavior of consumersto
reduce total travel costs, and clustering of homogeneous retailers facilitates comparison-
shopping behavior (Eppli and Benjamin, 1994).8 Studies have established the importance of
these retailer and consumer behaviors in the choice of retail shopping trips (Eppli and
Benjamin, 1994). Nevertheless, most of previous empirical studies did not incorporate these
behaviorsin retail gravity models.®

Spatia dependence of errors among consumers could arise due to clustering of
consumers with similar circumstances (e.g., individuals living in heavily shaded areas might
not spend as much at garden centers), common traffic routes, and sharing of information.

Previous studies did not incorporate such dependence in retail gravity models. Modeling
the dependence offers the possibility of better parameter estimation, correct inference (OLS
standard errors are biased downwards in the presence of positive spatial dependence), and

improved prediction (Cressie, 1993).

I11. Retail Sales Empirical Data, M ethods, and M odel

8 Most of gravity models assume that consumers shop from fixed points (e.g., their places of residence) and buy just
one type of good or service per shopping trip (Carter, 1993).

9 One exception is Nevin and Houston (1980) who include multi purpose shopping opportunities in their gravity
model.



Section A describesthe retail sales data and census data employed in this study. Section
B presents the SAR (simultaneous autoregressions) error model, section C provides
information on the spatial dependence specification, section D gives the relevant likelihood

function, while E shows the empirical model.
A. Retail Sales Data and Census Data

A retail consultant provided individual store and consumer data of aretail chain in the
Houston market under a non-disclosure agreement preventing the release of specific data.
The consumer data are for each household who shopped at a particular store. The variables
are the total dollar amounts each household spent at each individual store for the year 2000,
and the block group where each household resides. We aggregate the data to the block-group
level and calculate retail salesin ablock group for each store (Sales, ). Theindividua store
variables are total store salesin year 2000 ( 2ore sales) and in year 1999 (lagged 2ore sales),
store size in square feet ( dore 9ze), type of shopping center where each store resides
(grip, pad, ormall ), age of the shopping center (center age), as well aslongitude and
latitude of each store.10

We supplement the retail sales data with 1990 census data and 1998 census estimates. In
particular, we obtain census data relevant to the total potential expenditure for a block-group.
The data are median medical supplies expenditure (medical supp), median household
income ( med inc), median house value ( med val ), median house age ( house age), total
population (tot pop), land area (area land ), median age (med age), white population
( pop white), and female population ( females). Median house value, median house age, and
land area are for 1990, while the other data are for 1998. We also obtain the longitude and
latitude of each block-group to calculate the distances among retailers and consumers.

Specifically, we compute the distance that consumers travel from their block group to the

10 A strip (linear) shopping center consists of aline of stores with a pedestrian walk along the storefronts. A pad
(cluster) center is agroup of freestanding retail siteslinked together by pedestrian walkways.



stores (digancg,. ). Research has revealed that shopping trips may not be home based (Brown,
1992). Therefore, we aso obtain average travel time to work (travd time) for 1990 from
1990 census data to take into account shopping trips originating from places of employment.

Geographically, the Houston market covers Baytown, Friendswood, Houston, Humble,
Lake Jackson, Sugar Land, and Texas City. The retail chain has 14 storesin the Houston
market. Twelve stores are located in shopping malls, onein a strip shopping center, and one
in a pad-type shopping center.

Table 1 presents the descriptive statistics of the data used in this study. On average a
store had $1,846 of retail salesin ablock group. Retail salesin ablock group vary widely
from only $5 to $113,323. This variation indicates that retail sales do not uniformly originate
over space. The distance among retailers and consumers is measured using the Euclidean
metric. Over fifty percent of the consumerstraveled less than 10.5 miles from their residence
to the store where they shopped. Some consumers lived only 0.15 mile away from the store
they patronized while othersresided in distant locations.

For the 14 storesin our study, total store saleswere stable over year 1999 and year 2000.
A store on average generated about $1.3 million in annual sales. The stores generated sales
between about $0.5 million and $2 million. The average store size was 4,579 square feet. The
smallest store had 3,157 square feet, and the largest store had 6,612 square feet. The average
shopping center age was 10 years. The newest center opened 5 years ago, and the ol dest
center opened 15 years ago.

There are 2,977 block-groups in Texas whose residents shopped at the storesin the study
during 2000. Residents in a block group spent on average about $62,000 on medical supplies
in 1998. The median household income was $45,707 a year. The median house value was
about $71,000. Residents on average spent 25 minutes traveling from their home to work. On
average a block group has 1,837 residents and 10 square kilometersin area. The median age
of aresident was of 34 years old. A block group on average has 1,408 white residents and

928 femal e residents.



B. A SAR in Errors model

We describe a SAR in errors model, following the notation of Pace and Gilley (1997),

(I —aD)Y=(l —aD)Xp+¢ 2

where Y representsa nx1 vector of observations on the dependent variable, the matrix X
contains n observations on k independent variables, « isascalar parameter, D isan nxn
gpatial weight matrix, and & isan nx1 vector of error terms. When errors exhibit spatial
autocorrelation, a SAR in errors model partially differences each variable with the value of
that variable at nearby observations (DY, DX). After transforming both sides, the errors are
normal iid. Thismodel isequivalentto: Y = X/ + & where ¢ ~ N(0,Q) and

Q' =(1-aD) (I —aD).

Inthe SAR in error model, « > 0 indicates a positive spatial dependence. Thisimplies
that errors of same sign are geographically clustered together. On the other hand, a o <0
implies a negative spatial dependence, and thisimplies that the errors of the opposite sign are
clustered together geographically. When « =0, the SAR in errors model reducesto an OLS
model. In aretail context, similar consumer populations and shopping environments may
result in apositive spatial dependence among consumers. Individual stores sharing asimilar
retailing environment with other stores may lead to a positive spatial dependence among
storesin aretail chain.

To prevent an observation from directly predicting itself, D has zeros on its diagonal.
To facilitate interpretation, each row of D sumsto 1. To ensure the stability of the entire
error process, the spatial autocorrelation parameter, « , isrestricted to be less than one, and
since negative dependence seems unlikely, werestrict « to the interva [0,1).11 These

assumptions are summarized in the following:

11 This assumption is for convenience. If o < 0, the estimates should lie on the boundary o = 0. We did not
observe such a boundary solution.
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C. Specification of the Spatial Weight Matrix

To model the spatial dependence among stores and consumers, we specify a spatial
weight matrix D =wC+ (1-w)S, where C and S are weight matrices for consumers and
stores respectively, and 0 <w<1. When w=1, D reducesto C. When w=0, D reduces
to S Empirically, we search for the optimal w over [0.00, 0.01,...1.00].

Since D isa nx n matrix, a straightforward dense specification of thiswould quickly
result in intractable computations. Accordingly, we take aroute that preserves sparsity
among the components of D. This permits use of this approach in both large and small
markets.

Weform C using the approach of nearest neighbors with geometrically decaying
weights. Under this scheme, the weight given to each customer depends on the proximity of
each customer relative to all other customers. To make this feasible, we consider only the m
nearest customers (nearest neighbors) to each customer. To make this more flexible, we
allow for ageometrically declining weight for more distant neighbors.

Let N™ represent an n by n matrix where N{” > 0 when observation j isthe hth nearest
neighbors for observationi (h=1,2,---m, i,j=12,---n, i = j) and let N{” =0 otherwise.
Thus, N® N@® ... N®™ represents a sequence of neighbor matrices. Let p represent the rate
of geometric decay of weights such that the hth closest neighbors have aweight of p"
where 0 < p <1. Define C as,

Czith(h) iph
h=1 h=1



and by construction each row sumsto 1 and has zeros on the diagonal. Later, we search for

theoptimal C by varying m for 36 valuesover [1, 2...36] and varying p for 101 values
over [0.00, 0.01...1.00].

Turning to means of modelling spatial dependence among stores, we create S asa
product of sparse matrixes to overcome the computer memory requirement. We can divide
thisinto five steps. The first step forms the Delaunay triangularization among stores. The
Delaunay triangulation is the geometric dual of the Voronoi diagram that depicts the
geometric expression of connections among contiguous stores (Calciu and Salerno, 1997).12
Each store at a Delaunay triangle serves similar consumer populations who tend to live
together. With this approach, let V;, =1 when observations i and j share contiguous
triangles (i # j) and let V; =0 otherwise. Thus, V representsa ng x n, weight matrix of
Delaunay triangulation for ng stores.

The second step involves the row-standardization of V . Let

G-,/ 2
=

1#]
and henceGl[1, ] =[1, ], where [1, ] represents avector of ones.

Thethird step involves the aggregation of customers at each store. Let A, =1 when
customer i shops a store j, and zero otherwise. Therefore, A isa0, 1 matrix whose
dimensionis nxn..

For the fourth step, we can standardize A" aswell. Let R represent a ng x n, diagonal
matrix with elements equal to the reciprocal of the sum of the columns of A. In which case,
RA" will be row-stochastic, and thus RAT1] = [1] . Now forming S asa product of these

matrices,

S= AG(RA)

12 The Voronoi diagram has the property that for each store every point in the region around that store is closer to
that site than to any of the other stores.
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yields a feasible means of quantifying spatial averages at the customer level.

To make this more intuitive, consider some variable nx1 vector v which might
represent customer house values, a measure of wealth. The n_ x1 vector RA'v computesthe
average customer house price for each store (aggregates from n customersto ng stores), the
n,x1 vector GRA'vV computes the spatial average of customer house values at competing
stores for each store, and the nx n.matrix A redistributes the store level data back to the
customer level. Thus, AGRA'V represents the average house values of customers that
shopped at nearby stores. If v denotes an error, AGRA'V would measure the average errors
at nearby stores for each customer. If the independent variables underpredicted the
performance of nearby stores for some set of stores, AGRA'v would be positive for
customers who shopped at the store, and the use of this information could improve model
predictions.

With this relationship, we can perform operationswith S without needing to store an
nxn matrix. Instead, for some v we can first form RA'v, a n x1 vector, multiply this by
an ngx ng matrix, and then redistribute this result to each observation viathe nxn, matrix A.
None of these operations requires much time or memory. Asaresult, in our actua
computation, D =wC+ (1-w)AGRA' instead of D =wC+ (1-w)S.

Here is a numerical example showing how to express S with G and A Assume we

have following matrixes for 4 retail sale observationsfor 3 stores:

1 0O
100 05 05 0 O 0 1/2 1/2
A= 01 ol RA=l0 0 1 0|G=(1/2 0 1/2|,
0O o0 0 1 1/2 1/2 O
0 01

then,

11



O 0 05 05
O 0 05 05

~1025 025 0 05|
0.25 025 05 0

D. Maximum Likelihood Computations

The SAR in error model in (2) and (3) has the following profile log-likelihood function,

L(e)=x+In|l —aD|—%In(SSE(a)).

where SSE(a) = (Y — X£)'(I —aD)'(1 —aD)(Y — Xf) and x represents a constant (Pace,

Barry, Slawson, and Sirmans, 2002). We maximize the log-likelihood by computing
Equation (4) for 100 values of « over [0.00,0.01,....0.99].

To overcome the computer memory requirement, we implement the log-determinant
estimator of Barry and Pace (1999) to compute estimates of In|l —aD|. In particular,

In|I — aD| can be expanded in a power series as follows:
= —o'tr (D'
In|I—aD|:Z—a r( )

r=1

=tr(M) for

Using a finite approximation of the above expansion together with E( uM uj

any real nxn matrix M and n by 1 column vector u~ N, (0, 1), Barry and Pace (1999)

show a computationally simple way of estimating the log-determinant, and provide
confidence limits for the estimated |og-determinant.

Note, computation of the log-determinant only requires repeated multiplication of a D
by avector u since D?u equalsD(Du), D°u equalsD(D?u), and so forth. For sparse D
with number of elements proportional to n, each matrix-vector calculation uses O(n)
operations. SinceD = wC+ (1-w) AGRA', Du just requires a series of low-cost

computations, and this appliesto D'u for r =1...q aswell.

12
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In terms of computing the Monte Carlo estimate of In|l —«D|, we set q=98 and use

30 independent realizations of u .
E. The Empirical Model

We rewrite the retail gravity models, Equation (1), in log form and empirically model

retail sales as:
In(Sales,) = XB + & ®)

where X =X, X,:X.], Xy =[1 In(disancg,)], X, = avector of variables pertaining to
store b, X, = avector of variables pertaining to shoppers area ¢, and &, represents an error
term.

The matrix X, contains five variables of store characteristics. The five variables are
In(lagged dore saley, In(center age), In(soresze) aswell astwo store-type dummies,
dripand pad. Thematrix X, contains nine variablesin log form relevant to total potential
expenditure and average travel time to work inlog form for block group c. Specifically, the
10 variables are In(medical supp), In(med incg), In(med val), In(houseage), In(tot pop),
In(area land), In(med age), In(pop white), In(femaley, and In(travd time).

To model the spatial dependence among stores and consumers, we fit Equation (5) with
aSAR in error model using Pace and Barry’s (2002) spatial statistics toolbox 1.1.
Specifically we assume ¢, ~ N(O,[(L- aD)'(L- aD)]™).

In summary, we hypothesize the signs for the variables in Equation (5) are positive signs
for In(lagged gore saleg), In(doredze), In(medical supp), In(med inc), In(med val),

In(tot pop), In(arealand), In(med age), In(pop white), In( females), and negative for
In(digance,), In(center age), In(house age), In(travd time), drip, and pad.

V. Empirical Results

To understand the importance of spatial dependence, we calibrate four models that

consider different components of spatial dependence among consumers and stores. The first
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model ignores spatial dependence. The second model considers spatia dependence among
stores. The third model considers spatial dependence among consumers. The fourth model
considers both spatial dependence among stores and consumers. Table 2 presents the
calibration results of Equation (5).

Thefirst model calibrates the gravity model with OLS. As hypothesized, the distance
variable has a significant coefficient of —0.818, with signed root deviance (SRD) —-57.346.13
This coefficient is the constant distance elasticity of retail sales, which measuresthe
proportional changein retail saleswith respect to a small proportional change in distance. In
particular, the coefficient here predicts a 0.818% decrease in astore’ ssalesin a block group
when the distance between the store and block groups increases 1%.

The strip shopping center indicator variable has a significant and negative coefficient, as
hypothesized. This result matches those of Sirmans and Guidry (1993) as well as Oppewal
and Timmermans (1999). A mall has more aesthetically appealing design and usually
provides more protection to shoppers from the weather than other types of shopping centers
(Sirmans and Guidry, 1993). Oppewal and Timmermans (1999) find that design influences
consumer perception of shopping centers, and thus affects retail sales. However, several
other variables have significant coefficients with signs opposite to those hypothesized by
retail gravity. For variables pertaining to consumers, median household income and total
population of a block group have significant and negative coefficients. Their signs are
inconsistent with our hypotheses. For variables pertaining to retail stores, store size and
shopping center age have significant coefficients with signsinconsistent with our hypotheses.
Shopping center age has a positive coefficient while hypothesi zed to have a negative
coefficient. In addition, store size has a negative coefficient while hypothesized to have a

positive coefficient.

13 The signed root deviance or SRD equals the square root of likelihood ratio statistic with asign of its coefficient. It
has an interpretation similar to at-ratio. Squaring the SRD yields back the likelihood ratio statistic. We employ it to
avoid scaling problems.
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The second model only examines the spatial dependence among stores. The distance
variable increases dightly from —0.818 to —0.815 and remains significant with a SRD —
57.204. Although lagged store sales changes its coefficient from a negative value to the
hypothesized positive value, the coefficient isinsignificant. The dummy for a pad shopping
center changes to have the hypothesized negative coefficient but remainsinsignificant. Store
size still has a significant and negative coefficient. However, its SRD decreases near 43% in
absolute value from —9.378 to —5.355. The spatial dependence among stores does not change
either the signs or the significances of the coefficients of variables pertaining to consumers.
Nevertheless, the signed root deviances for median household income and total population of
ablock group decrease 3.46% and 34.84% in absolute val ue respectively.

The third model considers only the spatial dependence among consumers. The distance
estimated el asticity dramatically decreases by 68.34% (from —0.815 in the second model to —
1.372 in the third model). The associated SRD increases more than 19% in absolute value
from —57.204 to —68.304. In addition, spatial dependence among customers materially affects
the estimated parameters. The coefficients of median household income and total population
of ablock group become insignificant, but still have signs opposite to our hypotheses. Asa
result, now there are no consumer variables having significant coefficients with signs
opposite to our hypotheses. Median house age, median age of consumers, femal e population,
and average travel time to work change to have insignificant coefficients. Nevertheless,
median medical supplies expenditure changes to have a positive and significant coefficient as
hypothesized.

The spatial dependence among consumers al so influences store estimated parameters.
Lagged store sales, a proxy for store management, changes its coefficient from insignificant
to significant positive, as hypothesized. This coefficient is consistent with Black’s (1966)
argument. More sales enable a store to carry a greater variety of products, improve its
services to customers, and compete with other stores. In addition, lagged store sales may

capture the effect of store age on better management or other unobservables. Start-up
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problems may adversely affect salesfor storesin new locations (Hise, Kelly, Gable, and
McDonald, 1983). Stores in business longer should have overcome the start-up problems and
have larger store sales. All these effects can increase the attractive power of a store. Store
size still has a significant and negative coefficient. Nonetheless, it increases from —0.888 to —
0.557, and its SRD decreases 1.21% in absolute value from —5.355 to —5.290. However, the
dummy for a pad shopping center changes to have a significant and positive coefficient. This
coefficient is not consistent with Sirmans and Guidry (1993) as well as Oppewal and
Timmermans (1999).

The fourth model models both spatial dependence among stores and consumers.
Compared to the third model, the distance e asticity dightly decreases another 0.36% from —
1.372 t0 —1.377. The associated SRD increases another 2.07% in absolute value from —
68.304 to —69.721. The next most important variable, store size, in retail gravity models now
has a significant coefficient with hypothesized sign. Its coefficient changes to significant and
positive in Model 4 from significant and negativein Models 1, 2, and 3. The coefficient
changes from —0.557 in Model 3 t0 0.490 in Model 4. The SRD for store size changes from —
5.290 to 4.021. The dummy for a pad shopping center changes to have a significant and
negative coefficient, as hypothesized. In addition, center age changes to have a negative
coefficient. Although the coefficient is not significant, it has the hypothesized sign. Thissign
agrees with Sirmans and Guidry’s (1993) aswell as Gatzlaff, Sirmans, and Diskin’s (1994)
arguments. They argue that older shopping centers generally suffer functional or physica
deficiencies and have an inappropriate tenant mix due to changing markets, and thus have
less attractive power. The coefficient for lagged store sales increases about 58% in
magnitude from 0.190 to 0.300. Its SRD a so increases by over 50% from 4.644 to 7.012.
The coefficients of total population of ablock group become positive, as hypothesized, but
remain insignificant. Median household income still has an insignificant and negative
coefficient. However, this may not seem too surprising given the model already contains

medical supply expenditures, a more direct measure of medical spending potential than
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income. Nevertheless, the coefficient decreases more than 97% in absolute value from —
0.038 to -0.001. The SRD for the median household income a so decreases more than 97% in
absolute value from —0.895 to —0.024.

In addition to producing plausible estimated parameteers, model selection criteriaalso
show model's perform better when incorporating both forms of spatial dependence. The R?
increases from 0.386 for the first model to 0.548 for the fourth model. The log-likelihoods
also show that the fourth model outperforms the other three models. In fact, the likelihood
ratio statistic between Model 1 and Model 4 is about 2,005.

V. Conclusions

Gravity-type models have been applied to the retail context extensively. However, the
results have often seemed disappointing. For example, Kolter (1971) found that store size did
not prove significant in predicting store sales. Both Stanley and Sewall (1976) aswell as
Kolter (1971) conclude the gravity model was of limited value in predicting single store sales.
However, previous studies have assumed independence among customers and stores. For
these data, modeling spatial dependence resultsin far more plausible parameter estimates
than assuming independence. For example, under independence previous store sales have an
insignificant, negative effect on future store sales. After modeling spatial dependence,
previous store sales have significant, positive effect on future store sales. Under
independence, store size has a significant, negative effect on store sales. After modeling
spatial dependence, store size has a significant, positive effect on store sales. Under
independence, center age has a significant, positive effect on store sales. After modeling
spatial dependence, center age has ainsignificant, negative effect on store sales.

Even the distance variable, the central feature of the gravity model, may not be well
estimated under independence. Using actual salesfor aretail chain in the Houston market
and modeling spatial dependence among customers and stores, we find that the assumption

of independent errors can lead to understating the magnitude of the distance parameter by as

17



much as two-thirds. Thisresult implies that previous studies may have overestimated the
deterministic extent of trade areas as reflected in the distance parameter, and thus have

understated the importance of good locations.
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Table 1. Descriptive Statistics

Variables Label Mean Std Dev. Median | Minimum Maximum
Retail sales ($) saleg, 1,846.06 | 3,827.73 524.00 5.00 | 113,323.00
Distance (miles) disance, 22.29 45.99 10.49 0.15 712.26
Store sales ($) doresales 1,339,666.71 | 380,706.15 | 1,315,324.50 | 505,601.00 | 2,030,448.00
Lagged store sales ($) lagged toresales | 1 35417457 | 383,531.07 | 1,268,676.50 | 515,538.00 | 1,853,128.00
Shopping center age (years) center age 10.36 3.12 10.88 4.87 15.75
Store size (square feet) doredze 4,578.79 929.01 4511.00 | 3,157.00 6,612.00
Median Medical supplies expenditure ($1,000) medical supp 61.67 42.60 51.00 3.00 782.00
Median household income ($) med inc 45706.62 | 24,808.02 | 39,328.00 | 11,976.00 | 150,000.00
Median house value ($) med val 71,301.38 | 57,25359 | 57,100.00 | 14,999.00 | 500,001.00
Median house age (years) house age 31.98 11.94 29.00 10.00 61.00
Travel time to work (minutes) travd time 2453 6.28 24.40 6.90 54.10
Total Population (persons) tot pop 1,837.00 | 1,007.17 1,627.00 70.00 |  11,125.00
Land area (0.001 square kilometers) area land 10,428.72 | 33,201.48 1,125.00 60.00 | 446,589.00
Median age (year) med age 3357 6.50 32.70 11.20 75.00
White population (persons) pop white 1,407.99 876.56 1,282.00 500 | 10,135.00
Female population (persons) females 92787 | 507.12 826.00 4300|  6,019.00
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Table 2: Retail Gravity Models

Model 1 Mode 2

Independent variables Bovs SRD Pear SRD
In(distance,) -0.818 -57.346"™" -0.815 -57.204"
In(lagged tore sales) -0.007 -0.154 0.054 0.761
In(center age) 0.565 9,638 0.514 7.529™
In(dtore size) -1.059 -9.378 -0.888 -5.355
arip -0.310 -8.947™ -0.305 -8.888"""
pad 0.006 0.126 -0.016 -0.258
In(medical supp) -0.030 -0.495 -0.029 -0.470
In(med inc) -0.113 -3.123* -0.109 -3.015
In(med val) 0.144 3.581" 0.153 3.744+
In(house age) -0.358 -7.201"" -0.346 -6.926""
In(tot pop) -0.360 -2.586™ -0.252 -1.685"
In(area land) 0.189 17.861°* 0.186 17.476™*
In(med age) 0.236 2.425™ 0.229 2.349"
In(pop white) 0.070 4330 0.064 3.902"""
In(femaley 0.509 3.910"" 0.408 2.868"*
In(trave time) -0.683 -11.122+* -0.683 -11.117
Intercept 12.700 8.802"" 13.683 6.016
w 0
a 0.040 1.337
m 34
e 1
P 30
q 98
n 7,983 7,983
k 17 20
Log likelihood -36,165.975 -36,165.081
R’ 0.386 0.386

1.  Wistheweight on the spatial weight matrix for consumers.

2.« isthespatial autoregression parameter.

3. Misthe number of nearest blocks used in constructing the spatial weight matrix for consumers.

4.  prepresents 1 minustherate of geometric decay of weights on neighboring blocks in the spatial weight matrix.

5. p isthe number of trials performed to obtain the Monte Carlo estimates for the log-determinant term.

6.  (isthehighest order of power series expansion for the log-determinant term.

7.  SRD standsfor signed root deviance that equals the square root of likelihood statistics with asign of its coefficient.

8.  *significant at 10% level; ** significant at 5% level; *** significant at 1% level of sign without hypothesis.

9. *dignificant at 10% level; ™ significant at 5% level; * significant at 1% level of sign counter to hypothesis.

10. *significant at 10% level; ** significant at 5% level; ™ significant at 1% level of sign consistent with hypothesis.
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(Table 2 continued)

Model 3 Modd 4

Independent variables JL SRD B SRD
In(distance,) -1.372 -68.304" -1.377 -69.721"*
In(lagged sore sales) 0.190 4,644 0.300 7.012"
In(center age) 0.262 4,958 -0.079 -1.394
In(store sze) -0.557 -5.290 0.490 4,021+
qrip -0.251 -8.424 -0.148 -5.065"™"
pad 0.096 2.347 -0.112 -2.736™
In(medical supp) 0.431 6.049™" 0.386 5,537
In(med inc) -0.038 -0.895 -0.001 -0.024
In(med val) 0.186 4101 0.198 4,398
In(house age) -0.019 -0.292 -0.051 -0.839
In(tot pop) -0.170 -1.184 0.003 0.021
In(area land) 0.031 2.259" 0.049 3.390™"
In(med age) 0.010 0.098 0.034 0.352
In(pop white) 0.078 3.282""* 0.064 2.755™*
In(females) 0.163 1.228 0.044 0.333
In(trave time) -0.104 -1.332 -0.077 -0.997
Intercept 7.782 5.296 2.518 1.573
w 1 0.840
a 0.870 42.409™" 0.990 AAT777
m 34 34
p 1 1
P 30 30
q 98 98
n 7,983 7,983
k 20 21
Log likelihood -35,264.586 -35,163.504
R? 0.540 0.548

1.  Wistheweight on the spatial weight matrix for consumers.

2.« isthespatial autoregression parameter.

3. Misthe number of nearest blocks used in constructing the spatial weight matrix for consumers.

4.  prepresents 1 minustherate of geometric decay of weights on neighboring blocks in the spatial weight matrix.

5. p isthe number of trials performed to obtain the Monte Carlo estimates for the log-determinant term.

6.  (isthehighest order of power series expansion for the log-determinant term.

7.  SRD standsfor signed root deviance that equals the square root of likelihood statistics with asign of its coefficient.

8.  *significant at 10% level; ** significant at 5% level; *** significant at 1% level of sign without hypothesis.

9. *dignificant at 10% level; ™ significant at 5% level; * significant at 1% level of sign counter to hypothesis.

10. *significant at 10% level; ** significant at 5% level; ™ significant at 1% level of sign consistent with hypothesis.
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