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Predicting House Prices with Spatial Dependence: 

A Comparison of Alternative Methods 

 

Abstract 

This paper compares alternative methods for taking spatial dependence into 

account in house price prediction.  We select hedonic methods that have been reported in 

the literature to perform relatively well in terms of ex-sample prediction accuracy.  

Because differences in performance may be due to differences in data, we compare the 

methods using a single data set.  The estimation methods include simple OLS, a two-

stage process incorporating nearest neighbors’ residuals in the second stage, 

geostatistical, and trend surface models.  These models take into account submarkets by 

adding dummy variables or by estimating separate equations for each submarket.  

Submarkets are defined at different levels of aggregation.  We conclude that a 

geostatistical model with disaggregated submarket variables performs best. 

 

Key Words: spatial dependence, hedonic price models, geostatistical models, mass 

appraisal, housing submarkets 

 

JEL Codes: C21, R31 

 

Introduction 

The hedonic method is increasingly being used for price index construction, mass 

appraisal, and other purposes.  With respect to price index construction, the hedonic 
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method yields indices that are used for multiple purposes, such as tracking housing 

markets, analysis of real estate bubbles, or investment benchmarking.  For mass 

appraisal, the estimates yielded by hedonic models are used as a basis for the taxation of 

properties, but in some countries also to assess the value of properties for mortgage 

underwriting and for performance analyses of real estate portfolios.  The method is also 

well suited to assess the impacts of externalities, such as increased noise levels resulting 

for instance from the extension of an airport, on house values. 

Caution, however, should be exercised when devising hedonic models.  

Appropriate variables must be selected carefully and measured accurately.  And, as with 

all regression models, errors should be independent from one another, else parameter 

estimates will be inefficient and confidence intervals will be incorrect.  Both theory and 

empirical research suggests that the independence assumption is unlikely to be valid in a 

standard ordinary least squares (OLS) context.  Basu and Thibodeau (1998), for instance, 

argue that spatial dependence exists because nearby properties will often have similar 

structural features (they were often developed at the same time) and also share locational 

amenities.  Consistent with theory, much empirical analysis has concluded that house 

price residuals are spatially dependent. 

Multiple authors have analyzed alternative methods for constructing and 

estimating hedonic models with spatial dependence in the context of mass appraisal.  For 

example, Dubin (1988) compared geostatistical and OLS techniques, as did Basu and 

Thibodeau (1998).  Other efforts include: Can and Megbolugbe (1997), who investigate a 

spatial lag model; Pace and Gilley (1997), who develop lattice models; Fik, Ling, and 

Mulligan (2003), who explore a trend surface model; Thibodeau (2003), who considers 
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the importance of spatial disaggregation in a geostatistical model; and Case, Clapp, 

Dubin, and Rodriguez (2004), who compare various approaches. 

One difficulty in comparing these studies is that they use different data, and their 

results may be data-dependent.  One contribution of the present paper is to compare 

several methods using the same data set.  We use a data set from Louisville, Kentucky, 

containing approximately 13,000 house sales for 1999.  Our approach is similar to that of 

Case, Clapp, Dubin, and Rodriguez (2004), but we consider their best model (contributed 

by Case) in comparison to other methods that have performed well in other studies.  We 

focus specifically on the best models from Thibodeau (2003), Fik, Ling, and Mulligan 

(2003, henceforth FLM), and Bourassa, Cantoni, and Hoesli (2007, henceforth BCH).  

Another contribution of the present paper is to perform each type of analysis using 100 

random samples of the data for estimation purposes to insure that the results are not 

specific to a particular sample. 

The estimation methods include simple OLS, a two-stage process incorporating 

nearest neighbors’ residuals in the second stage (similar to Case), geostatistical (similar 

to Thibodeau and BCH), and trend surface models (similar to FLM).  These models take 

into account submarkets by adding dummy variables (as in BCH) or by estimating 

separate equations for each submarket (as in Thibodeau).  Submarkets are defined at 

different levels of aggregation, ranging from highly disaggregated (as in Thibodeau) to 

less disaggregated (as in Case). 

 We conclude that taking into account submarkets is important in achieving more 

accurate house price predictions.  Highly disaggregated submarkets are more effective 

than less disaggregated ones.  Our results further show the benefits of modeling spatial 
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dependence in the error term.  Geostatistical methods seem more useful than the two-

stage nearest neighbors’ residual procedure.  Our best result is for a geostatistical model 

with dummy variables for disaggregated submarkets. 

The structure of the paper is as follows.  The next section contains a review of 

techniques for modeling spatial dependence.  The third section summarizes previous 

comparative research.  The subsequent section contains a discussion of the research 

design, which is followed by a section on our empirical analyses.  The final section 

contains some concluding remarks. 

 

Modeling Spatial Dependence 

Spatial dependence can be treated in two basic ways.  We assume a general 

model, 

 

εμ += )(XY ,        (1) 

 

where Y is a vector of transaction prices, X is a matrix of values for residential property 

characteristics, and ε is an error term.  The first approach is to model µ(X) so that 

residuals over space do not exhibit any pattern.  This may involve incorporating 

geographical coordinates (Colwell, 1998; Pavlov, 2000; Clapp, 2003).  For example, 

FLM use data from Tucson, Arizona, to estimate what is in effect a three-dimensional or 

trend surface of property values based on a small number of property characteristics: land 

area, floor area, and age.  Their OLS model includes these characteristics, plus x- and y-

coordinates and submarket dummies.  In addition, squares and cubes of these variables 
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and various interactive terms are included.  A stepwise regression procedure eliminates 

collinear variables.  They argue that this method captures the spatial dependence in the 

data and also results in substantial improvement in prediction accuracy.  This approach is 

related to the local regression model of Clapp (2003), which is one of the models 

considered by Case, Clapp, Dubin, and Rodriguez (2004), and other methods that have 

come out of the geographical literature (see, e.g., Geniaux and Napoléone, 2008). 

Another commonly used method is to add spatial indicators such as dummy 

variables for submarkets, which can be defined as geographical areas or non-contiguous 

groups of dwellings having similar characteristics and/or hedonic prices.  An alternative 

to the use of dummy variables is to estimate separate equations for each submarket, thus 

allowing both intercepts and slopes to vary across areas or groups.  For example, 

Thibodeau (2003) and Goodman and Thibodeau (2007) combine census block groups 

into small areas with enough transactions to estimate separate hedonic equations.  Case 

(in Case, Clapp, Dubin, and Rodriguez, 2004) uses cluster analysis based on hedonic 

prices and demographic characteristics for census tracts to identify submarkets; he then 

estimates separate hedonic equations for each submarket. 

Another approach to modifying µ(X) is to consider spatial lags, which are 

neighboring properties’ prices or residuals.  One such method includes as a regressor the 

weighted average of recent sale prices for nearby properties (Can and Megbolugbe, 

1997).  A variation on that method adds to predicted house prices an average (possibly 

weighted) of nearby properties’ residuals (Bourassa, Hoesli, and Peng, 2003).  A more 

complicated two-step estimation procedure takes an average of neighboring properties’ 

residuals from a first-stage estimation and adds that as a regressor in the second stage 
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(Case, Clapp, Dubin, and Rodriguez, 2004).  The latter method is equivalent to the 

former method if the estimated coefficient for the residual in the second-stage equation 

equals one; otherwise, the two-step procedure should yield better results. 

The second approach is to model ε, that is, to assume not only that 0)( =εE , but 

also that Ω=′)( εεE , which is a matrix with at least some nonzero off-diagonal elements.  

This approach includes geostatistical models such as those applied by Dubin (1998) or 

Basu and Thibodeau (1998) and the lattice models that have been refined and applied by 

Pace and his colleagues (e.g., Pace and Barry, 1997).  BCH give an overview of these 

methods.  The assumptions behind the two classes of spatial statistical models differ in 

terms of the definition of the domain over which spatial locations are permitted to vary.  

In the case of lattice models, which include simultaneous autoregressive (SAR) and 

conditional autoregressive (CAR) variants, locations are restricted to the discrete set of 

points represented by the data used to estimate the model.  In contrast, geostatistical 

models permit an infinite number of locations within a given geographical area.  This has 

implications for the way predictions based on each type of model take into account 

spatial information. 

The lattice approach models the covariance matrix of the errors parametrically, 

whereas the geostatistical approach builds the covariance matrix indirectly through a 

parametric variogram.  Moreover, the underlying assumptions of the two approaches 

differ.  Lattice models assume βμ XX =)(  and parameterize the covariance function of 

the error term of the model by assuming either that )(21 CI φσ −=Ω−  (CAR models) or 

that )()(21 DIDI αασ −′−=Ω−  (SAR models), where C  and D  represent spatial weight 

matrices that specify the dependence among observations.  Predictions are generally 
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computed simply as β̂ˆ XY = , although methods are available for incorporating 

information from D when calculating fitted values.  An example of the lattice approach is 

Pace, Barry, Clapp, and Rodriguez (1998), who use both spatial and temporal weight 

matrices for nearby and recent transactions. 

In contrast to lattice models, geostatistical models are based on the assumption 

that the observed data at a location s is a realization of a random process }:)({ FssY ∈ , 

which is supposed to satisfy a second-order stationarity assumption, that is, for which 

μ=))(( sYE  for all Fs∈  (constant mean) and )())(),(( 2121 ssCsYsYCov −=  for all 

Fss ∈21 , , where )(⋅C  is called the covariogram.  In effect, the covariance between 

locations depends only on the distance between them. 

The geostatistical approach attempts to model the covariance matrix through a 

procedure based on three steps: (1) computation of an empirical variogram; 

(2) parametric modeling of this variogram; and (3) kriging (that is, prediction).  The only 

information needed to perform these three steps is the notion of variogram defined as a 

function of the distance h  between locations: 

 

2 ( ) ( ( ) ( ))h Var Y s h Y sγ = + − ,      (2) 

 

where )(hγ  is called the semivariogram. 

The classical and most popular estimator of the variogram is obtained by the 

method of moments and was first proposed by Matheron (1962): 
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( )2

( )

1ˆ2 ( ) ( ) ( )
( ) i j

N h
h Y s Y s

N h
γ = −∑ ,      (3) 

 

where }:),{()( hssjihN ji =−=  and )(hN  is the number of distinct elements of )(hN .  

For a given distance h , this variogram estimator is a variance estimator over all pairs of 

observations that are at a distance h  apart.  Note that when data are irregularly spaced, 

the variogram is usually smoothed by summing over pairs of points that lie in a tolerance 

region.  )(ˆ hγ is an unbiased estimator of )(hγ , but is known to be badly affected in 

presence of outliers.  Therefore, Cressie and Hawkins (1980) have defined a more robust 

estimator: 

 

4
1/ 2

( )

1 0.4942 ( ) ( ) ( ) 0.457
( ) ( )i j

N h
h Y s Y s

N h N h
γ

⎧ ⎫ ⎛ ⎞⎪ ⎪= − +∑ ⎜ ⎟⎨ ⎬
⎪ ⎪⎩ ⎭ ⎝ ⎠

� .   (4) 

 

In the presence of outlying observations this estimator is more stable. 

The second step of the procedure consists of fitting a parametric model to the 

empirical variogram (either classical or robust).  The most popular models include the 

exponential and spherical variograms.  BCH conclude that these two variograms yield 

quite similar results in the same type of application as in this article, so we focus here on 

the exponential variogram, which is defined as 

 

( )⎩
⎨
⎧

−−+
=

)/exp(1
0

);(
0 ee ahcc

h ϑγ
⎭
⎬
⎫

≠
=

0if
0if

h
h

,    (5) 
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where ),,( 0 ′=
ee accϑ  with 00 ≥c , 0≥ec and 0≥ea .  The parameter 0c  is the limit of 

)(hγ  when 0→h  and is called the “nugget effect”.  The other parameters in ϑ  control 

the functional form of );( ϑγ h .  The parametric variograms can be fitted to data by 

several procedures, which include—among others—(restricted) maximum likelihood and 

generalized least squares.  BCH also conclude that the robust method is slightly superior 

to the classical method, so the exponential robust estimator is used here. 

Given a fitted variogram, the procedure goes on to compute the prediction at a 

point 0s  as a linear combination of the responses, that is, 

 

∑
=

=′=
n

i
ii sYYsY

1
0 )()(ˆ λλ ,       (6) 

 

where ),,( 1 ′= nλλλ … is obtained by minimizing the mean squared prediction error 

 

∑
=

−
n

i
ii sYsYE

1

2
0 ))()(( λ .       (7) 

 

The solution for λ  depends on )( 0 iss −γ  for all ni ,,1…= , and on )( ji ss −γ  for all 

nji ≤≤  ,1 .  )(ˆ
0sY  is the best linear unbiased predictor.  The solution obtained is an exact 

interpolation at the sample points, that is, )()(ˆ
ii sYsY =  for all ni ,,1…= .  Note in 

particular that the formula above allows the computation of predictions at both sampled 

and unsampled locations, thus avoiding the problem with lattice models. 
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Previous Comparative Research 

Previous empirical comparisons of the ex-sample prediction accuracy of different 

methods include Bourassa, Hoesli, and Peng (2003), who compare a set of spatial 

submarkets defined by real estate appraisers with a set of aspatial submarkets created 

using factor and cluster analysis.  They also consider the impacts of adjusting predictions 

by neighboring properties’ residuals.  Using data for Auckland, New Zealand, they find 

that the most accurate predictions are obtained with a citywide equation with spatial 

submarket dummy variables and adjustment by neighboring residuals.  Separate 

submarket equations performed slightly worse or better than the citywide equation, 

depending on whether the predictions were or were not adjusted for neighboring 

residuals, respectively.  A similar conclusion was reached by Fletcher, Gallimore, and 

Mangan (2000), who compared predictions from a model with postcode dummies for the 

Midlands region of the United Kingdom with separate equations for each postcode.  They 

found that the former was slightly superior to the latter. 

Goodman and Thibodeau (2003) compare predictions for three submarket 

definitions with those for a market-wide model for Dallas.  The submarket models are 

defined based on zip codes, census tracts, and a hierarchical method described in 

Goodman and Thibodeau (1998).  They conclude that each of the submarket definitions 

yields significantly better results than the market-wide model, but none of the submarket 

definitions dominates the others.  Goodman and Thibodeau (2007) compare spatial 

submarkets consisting of adjacent census block groups with aspatial submarkets 

constructed based on dwelling size and price per square foot.  Both submarket methods 
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produce significantly better predictions than obtained from the market-wide model, 

although neither clearly dominates the other. 

Dubin’s (1988) study uses data for Baltimore to compare predictions using OLS 

and a geostatistical technique.  She concludes that the geostatistical approach is superior 

even when some neighborhood (census block group) characteristics are included as 

explanatory variables.  Basu and Thibodeau (1998) compare the predictive ability of OLS 

and one geostatistical technique, concluding that the latter is superior for six of eight 

regions in Dallas. 

Thibodeau (2003) applies OLS and geostatistical methods to data from Dallas to 

compare the prediction accuracy of various models.  He estimates an overall market 

model for the Dallas area, the same model with dummy variables for municipalities, 

individual models for municipalities, and individual models for “neighborhoods”.  The 

neighborhoods were constructed by combining adjacent census block groups until there 

were at least 150 transactions in each estimation sample, with the estimation sample 

consisting of 90% of transactions in each neighborhood.  His best results are for the 

individual neighborhood geostatistical estimations; however, at the neighborhood level, 

the accuracy obtained from geostatistical methods is only marginally greater than for the 

OLS estimations. 

Using data for Auckland, New Zealand, BCH compare an OLS model that 

includes submarket dummy variables with geostatistical, CAR, and SAR models.  They 

show that lattice methods perform poorly in a mass appraisal context in comparison to 

geostatistical approaches or even a simple OLS model that ignores spatial dependence; 

however, they do not consider the possibility of using neighboring properties’ residuals to 
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improve prediction accuracy.  Their best results are obtained by incorporating submarket 

variables into a geostatistical framework. 

Neill, Hassenzahl, and Assane (2007) compare OLS models including locational 

and submarket (census tract) variables with geostatistical models in a study of price 

impacts of air quality variations in Las Vegas.  They find that geostatistical predictions 

outperform OLS predictions in approximately 90% of ex-sample cases. 

Case, Clapp, Dubin, and Rodriguez (2004) apply OLS and several spatial 

statistical methods to a large sample of transactions (from Fairfax County, Virginia), 

using out-of-sample prediction accuracy for comparison purposes.  The methods include: 

ordinary least squares with latitude and longitude variables for trend surface analysis as 

well as census tract and time dummies; Clapp’s local regression model which applies 

OLS techniques to housing characteristics and a nonparametric smoothing method to a 

three-dimensional vector of latitude, longitude, and time for each transaction; Dubin’s 

geostatistical approach which estimates a separate equation for each prediction point 

using a subsample of the data; and Case’s approach which forms submarkets by applying 

cluster analysis to census tracts and then uses a two-stage estimation procedure that 

incorporates nearest neighbors’ residuals from the first stage as variables in the second 

stage.  In a second round of estimations, all of the models were supplemented by nearest 

neighbor residuals.  After adjusting for neighbors’ residuals, the results were quite similar 

across different estimation methods but Case’s results were marginally better than the 

others. 

 FLM compare four models using data from Tucson: a standard OLS hedonic 

model; the standard model with the addition of submarket dummy variables; a trend 
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surface model with latitude and longitude interacted with each other and the hedonic 

characteristics; and the same model with the addition of submarket dummies (also 

interacted).  The second and third models are superior to the first and similar to each 

other with respect to prediction accuracy.  Their best results are for the fourth model that 

includes both trend surface variables and submarket dummies. 

 

Research Design 

Our focus is on comparing methods that have performed relatively well in terms 

of ex-sample prediction accuracy.  These methods include a geostatistical model, models 

taking into account nearest neighbors’ residuals, and trend surface models.  The primary 

criterion for comparison purposes is the percentage of ex-sample predictions within 10% 

of the transaction price.  According to FLM, for example, Freddie Mac’s criterion for 

evaluating automated valuation models is that at least 50% of predictions should be 

within 10% of the actual price.  Using a geostatistical model estimated for individual 

submarkets in Dallas, Thibodeau (2003) obtains a 63.6% accuracy rate.  BCH estimate a 

geostatistical model with submarket dummy variables for Auckland, New Zealand.  They 

achieve an accuracy rate of 49.3%, which is just shy of the Freddie Mac threshold.  The 

most comparable approach in Thibodeau (2003) yields an accuracy rate of 43.4%.  The 

best results in Case, Clapp, Dubin, and Rodriguez (2004) are those estimated by Case for 

homogeneous districts obtained using cluster analysis.  A two-stage process first 

estimates individual equations for each district and then uses nearest neighbor residuals 

as variables in a second stage.  He does not report the percentage of predictions within 

10% of the actual price; however, he does report that the mean of the absolute value 
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percentage error is 11.8% (the median is 8.0%).  BCH report a comparable statistic of 

14.3% for their geostatistical model with submarket dummies.  For their best model with 

both trend surface and submarket variables for Tucson, FLM report that 65.0% of their 

predictions are within 10% of transaction price. 

The differences in accuracy across different studies may be due to either methods 

or data.  Consequently, we apply the methods described in the preceding paragraph to the 

same data to facilitate comparisons.  This approach is the same as that followed by Case, 

Clapp, Dubin, and Rodriguez (2004), but we take their best method and compare it with 

other methods that they did not consider. 

Our base model is a simple OLS estimation with no controls for spatial effects.  

We then re-estimate the model with the average of the 10 nearest neighbors’ residuals 

from the first-stage estimation included as a variable in the second stage.  We also 

estimate a geostatistical model using the robust exponential technique (following BCH).  

Then we define submarkets using methods similar to those used by Case and by 

Thibodeau.  We use census block groups as the building blocks for constructing 

submarkets by combining adjacent blocks with similar median house values until each 

resulting “transaction group” has at least 200 transactions.  These transaction groups are 

similar to the “neighborhoods” defined by Thibodeau.1  We also combine these 

transaction groups using cluster analysis to form “clusters” that are similar to the 

“districts” defined by Case.  We then estimate a set of equations with dummy variables 

for transaction groups or clusters, using OLS, the two-stage nearest neighbors’ residuals 

method, and the geostatistical method.  We also estimate separate equations for each 

transaction group and cluster, using OLS and, where possible, the nearest neighbors and 
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geostatistical approaches.  Given results previously reported by BCH, we do not estimate 

a lattice model; however, it may be worthwhile to compare some versions of SAR or 

CAR models with geostatistical approaches in future research. 

Finally, we apply the trend surface method of FLM, using the Case-style clusters 

as submarkets.  Because the FLM method can generate a large number of variables, we 

use a small number of property characteristics: lot size, floor area, and age.  We include 

the squares and cubes of these characteristics as well as of the x- and y-coordinates and 

their squares and cubes.  The variables include dummies for the submarkets.  All possible 

pairs of variables are also interacted subject to the restriction that the sum of the powers 

is three or less.  A stepwise procedure is used to eliminate collinearity. 

The procedure for defining the Case-style clusters is a somewhat simplified 

version of Case’s approach.  Similar to Case, we consider two sets of variables: mean 

property characteristics and hedonic price estimates.  We use Ward’s hierarchical 

clustering method, which appears to be less sensitive to the initial seeds than the k-means 

method used by Case. 

To insure that the results are not an artifact of the particular estimation sample 

chosen, each model is estimated using 100 random samples of the data.  For each market-

wide model (with or without submarket dummies), we estimate hedonic regressions using 

100 samples each containing approximately 74% (9,600) of the total of 12,982 

observations.  For each of the 100 splits, ex-sample predictions are generated for the 

remaining 26% of the data.  When separate submarket equations are estimated, we use 

100 random samples consisting of 74% of the transactions for each Case-style cluster or 

160 transactions for each Thibodeau-style group.  Again, predictions are made for the ex-
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sample transactions.  We calculate error statistics and the proportions of predictions that 

are within 10% and 20% of the sale prices and report the medians for each model.  These 

form the basis for our comparisons. 

We specify our hedonic models using the variables available in the local property 

tax assessment database.  We do not construct any spatial variables—such as measures of 

distance to the central business district or neighborhood characteristics—to allow spatial 

relationships to be captured to the extent possible by either submarket variables or 

geostatistical techniques.  To implement the geostatistical approach, we used the 

S+Spatial Toolbox of the commercial software Splus. 

 

Empirical Analysis 

Data 

The house price data are from the official records of the Property Valuation 

Administrator for Jefferson County (Louisville), Kentucky.2  These records include sale 

prices, as well as various property characteristics, for all real estate transactions.  We use 

data for all single family houses that sold in 1999.  Some transactions were deleted due to 

missing data or because they could not be geocoded to census block groups.  Also, 

transactions were deleted for properties whose sale prices, land areas, or floor sizes 

seemed unrealistically low or high.  In the case of land area, properties greater than one-

half acre in size were deleted because they are more likely to have been sold for 

redevelopment purposes.  This results in a sample of 12,982 transactions. 

Some variables were transformed before entering into the estimations.  We use 

the natural logarithm of the dependent variable, house price.3  Both age and age squared 
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are included in the model as the relation between house value and age is expected to 

follow a U-shaped curve.  Also, the square of land area is included along with land area 

to reflect the decreasing marginal return to land. 

Means for the sale prices, property characteristics, and quarterly time dummies 

are reported in Exhibit 1 (Panel A), along with statistics for the cluster analyses based on 

the transaction group hedonic characteristics and prices (Panels B and C, respectively).  

The census block groups, transaction groups, and clusters are mapped in Exhibit 2. 

[Exhibits 1 and 2 here] 

 

Cluster Analysis 

The hierarchical cluster analysis procedure is applied to hedonic characteristics 

and prices, respectively, to produce varying numbers of clusters.  The cluster analysis of 

hedonic prices includes estimates for land area squared, age of house squared, and the 

intercept term, in addition to the other hedonic characteristics.  For both cluster analyses, 

we include x- and y-coordinates as variables to help impose some contiguity constraints.  

The optimal number of clusters is chosen such that adding another cluster results in only 

a minimal improvement in the percentage of variance explained.  This rule of thumb 

suggests that eight clusters are optimal, whether the clusters are based on hedonic 

characteristics or prices.  Also, the cluster definitions (as shown in Exhibit 2) turn out to 

be the same for both sets of data. 
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Hedonic Models 

Exhibit 3 reports the results of the hedonic regressions performed for the first of 

our 100 estimation samples.  We report regression results for the OLS model without 

submarket dummy variables, for the OLS model with cluster dummy variables, and for 

the OLS model with transaction group dummy variables (the estimated coefficients for 

the dummy variables are omitted from the table).  The R2 for the model with no 

submarket variables is 0.70 and increases when either set of submarket variables is 

added, to 0.75 and 0.78, respectively. 

[Exhibit 3 here] 

In the equation without submarket dummies, all variables are significant at the 1% 

level and all but one (age squared) have the expected signs.  Property values are 

positively related to land area, floor area, the number of bathrooms, the degree to which 

the basement is finished, whether the house has air-conditioning and a fireplace, and the 

number of garages.  The marginal utility of land decreases with lot size.  The coefficients 

on the amenity variables for central air-conditioning and fireplaces appear quite high.  

For instance, air-conditioning adds 18% to the value of a house in the OLS model without 

submarket variables.  There are at least two explanations for the magnitude of these 

coefficients.  First, houses with central air-conditioning and a fireplace are likely to be of 

higher quality and hence these variables may be picking up other effects such as the 

quality of construction.  Second, it is likely that these variables are capturing quality 

differences across submarkets which are not controlled for given that submarket variables 

are not included in the first model.  As a matter of fact, the coefficients on the central air-
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conditioning and fireplace variables decrease substantially when submarket variables are 

added to the model. 

The age variable has the expected negative sign.  However, the coefficient on age 

squared is significantly negative in the OLS model with no submarket variables and 

positive, but not significant, in the model including variables for clusters.  This may be 

because there is no control for location (in the first model) or because the control is 

incomplete (in the second model).  In the third model, the coefficient on age squared has 

the anticipated positive sign and is significant.  The magnitudes of some of the 

coefficients for the cluster and transaction group dummy variables (not reported here) 

highlight the fact that there are substantial differences in prices across the Louisville 

housing market. 

Applying the FLM method to the first estimation sample yields an R2 of 0.76.  

Because this method as applied to our data leaves large numbers of variables in the 

models (for example, 41 for the first sample), we do not report an example of regression 

results. 

 

House Price Prediction 

Exhibit 4 reports comparative statistics for the various models: medians of the 

average absolute errors, average absolute relative errors, and percentages of predictions 

within 10% and 20% of the actual price.  Here we focus on the percentage within 10% 

criterion.  Our simple OLS model without submarkets or spatial adjustments yields a 

median accuracy of 36.5%, whereas the figure is 42.3% when the geostatistical method is 

used to control for spatial effects.  These results are broadly similar to those for the most 
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comparable models reported in Thibodeau (2003): 35.9% and 46.9%, respectively.  For 

the model without submarket dummies, there is not much difference in accuracy between 

the nearest neighbors’ residuals and geostatistical methods for controlling spatial effects. 

[Exhibit 4 here] 

 Adding dummy variables for clusters leads to a significant improvement in 

accuracy performance from 36.5% to 40.3%.  Spatial adjustment by means of the 

geostatistical method improves the results even further (to 45.5%), whereas the nearest 

neighbor two-stage method improves accuracy only marginally.  Using multiple 

equations for the clusters leads to better accuracy (42.4%) than the single equation with 

dummy variables (40.3%).  This is consistent with results reported in Thibodeau (2003).  

However, using the two-stage nearest neighbor residual adjustment lowers performance 

to 38.4%.  The latter result pertains to the method that is closest to Case’s.  For our data, 

this method does not appear to be particularly effective, although this could have 

something to do with differences in the ways nearest neighbors’ residuals are treated.  

Also, the geostatistical method does not work here due to lack of convergence when 

fitting the parametric exponential variogram to the empirical one.  The spherical 

variogram suffers from the same problem, which is probably related to the nature of the 

data at hand. 

 Considering a larger number of submarkets leads to better results.  For instance, 

the accuracy is 44.0% when dummy variables for the transaction groups are included in 

the OLS model.  The overall best result is for the geostatistical model with transaction 

group dummies (47.4%).  This is consistent with the results of Thibodeau (2003) and 
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BCH; however, Thibodeau does not report results for a single equation with 

neighborhood dummy variables, so we are unable to fully compare these results with his. 

 Multiple equations for the 60 transaction groups yield slightly worse results 

(43.4%) than a single equation with submarket dummy variables (44.0%).  For the 

reasons highlighted above, we are unable to implement the geostatistical model for the 60 

groups and hence cannot replicate Thibodeau’s best performing model.4  However, his 

geostatistical multiple equation results are only slightly better (less than 2 percentage 

points) than his OLS results, suggesting that we would obtain a similar improvement.  

This implies that the multiple equation approach would not yield our best results even if 

we could implement the geostatistical model. 

 The FLM approach yields the second worst results (37.5%).  This is only 1 

percentage point better than an OLS model with neither submarket dummies nor any 

spatial adjustments.  Given our data, the FLM method is not particularly effective in 

taking into account spatial dependencies for mass appraisal purposes.  It performs well 

for FLM’s Tucson data, although we do not know whether alternative methods would 

produce even more accurate results. 

 Overall, the prediction accuracy results reported in this paper tend to be lower 

than in other studies.  While our best result is 47.4%, Thibodeau’s best result is 63.6% 

and FLM’s best result is 65.0%.  In contrast, BCH’s best result is 49.3%.  These 

differences may be due to variations across cities in unmeasured characteristics related to 

property condition that do not exhibit a clear spatial pattern and hence are not controlled 

for using spatial techniques.  We speculate that these variations are related to the age of 

the housing stock because there is likely to be greater variability in condition the older 
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the stock.  We note that the average ages of houses in Thibodeau’s Dallas sample, FLM’s 

Tucson sample, and Case’s Fairfax sample are 33, 22, and 8 years, respectively.  In 

comparison, the average ages in BCH’s Auckland sample and our Louisville sample are 

47 and 38 years, respectively. 

 

Conclusions 

 Automated valuation models are used in many countries for tax appraisal and 

mortgage underwriting purposes.  Automated valuation is typically implemented using 

hedonic regression models.  An important issue in such models is controlling for spatial 

dependence.  Various authors have analyzed alternative methods for doing so.  The 

results vary substantially from one study to another, which could be due to either 

methods or data.  To control for the impacts of data, we apply several methods that 

perform well in the literature to a single data set. 

 Taking into account submarkets is important in achieving more accurate price 

predictions.  More specifically, increasing the number of submarkets improves the 

results, confirming a conclusion in Thibodeau (2003) and Goodman and Thibodeau 

(2007).  Obviously, the level of disaggregation is constrained by the number of 

transactions available for model estimation purposes.  We are not able to reach any firm 

conclusion about the relative merits of single equation versus multiple equation methods 

of controlling for submarket effects. 

 Our results show the benefits of modeling spatial dependence in the error term.  

Geostatistical methods seem more useful than the two-stage nearest neighbors’ residual 

procedure.  An OLS estimation that takes into account disaggregated submarkets is 
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slightly more effective than a geostatistical model with no consideration of submarkets.  

However, our best result is for a geostatistical model with dummy variables for relatively 

disaggregated submarkets. 

 

 

Endnotes 

 
1 Thibodeau (2003) uses two years of data, whereas we use only one year.  Hence, all else 

being equal, he should have smaller and possibly more homogenous areas. 

2 Jefferson County merged with the City of Louisville in 2003. 

3 The OLS predictions are calculated as nexp(ln )Y , although the correct transformation 

would be n 2ˆexp(ln 0.5 )Y σ+ .  Because we are unable to implement equivalent 

transformations for predictions based on geostatistical methods, we do not add 2ˆ5.0 σ  

before taking the antilogs of the OLS predictions.  Given the large sample size, this has 

only a trivial impact on the results. 

4  Given the small size of the areas, we did not attempt to use the two-stage nearest 

neighbor residual adjustment. 



References 

Basu, A., and T.G. Thibodeau.  Analysis of Spatial Autocorrelation in House Prices.  

Journal of Real Estate Finance and Economics, 1998, 17:1, 61–85. 

Bourassa, S.C., E. Cantoni, and M. Hoesli.  Spatial Dependence, Housing Submarkets, 

and House Price Prediction.  Journal of Real Estate Finance and Economics, 2007, 

35:2, 143–60. 

Bourassa, S.C., M. Hoesli, and V.S. Peng.  Do Housing Submarkets Really Matter?  

Journal of Housing Economics, 2003, 12:1, 12–28. 

Can, A., and I. Megbolugbe.  Spatial Dependence and House Price Index Construction.  

Journal of Real Estate Finance and Economics, 1997, 14:1/2, 203–22. 

Case, B., J. Clapp, R. Dubin, and M. Rodriguez.  Modeling Spatial and Temporal House 

Price Patterns: A Comparison of Four Models.  Journal of Real Estate Finance and 

Economics, 2004, 29:2, 167–91. 

Clapp, J.M.  A Semiparametric Method for Valuing Residential Locations: Application to 

Automated Valuation.  Journal of Real Estate Finance and Economics, 2003, 27:3, 

303–20. 

Colwell, P.F.  A Primer on Piecewise Parabolic Multiple Regression Analysis via 

Estimations of Chicago CBD Land Prices.  Journal of Real Estate Finance and 

Economics, 1998, 17:1, 87–97. 

Cressie, N., and D.M. Hawkins.  Robust Estimation of the Variogram, I.  Journal of the 

International Association for Mathematical Geology, 1980, 12:2, 115–25. 

Dubin, R.A.  Estimation of Regression Coefficients in the Presence of Spatially 

Autocorrelated Error Terms.  Review of Economics and Statistics, 1988, 70:3, 466–

74. 



 26

Dubin, R.A.  Predicting House Prices Using Multiple Listings Data.  Journal of Real 

Estate Finance and Economics, 1998, 17:1, 35–59. 

Fik, T.J., D.C. Ling, and G.F. Mulligan.  Modeling Spatial Variation in Housing Prices: 

A Variable Interaction Approach.  Real Estate Economics, 2003, 31:4, 623–46. 

Fletcher, M., P. Gallimore, and J. Mangan.  The Modelling of Housing Submarkets.  

Journal of Property Investment and Finance, 2000, 18:4, 473–87. 

Geniaux, G.,  and C. Napoléone.  Semi-Parametric Tools for Spatial Hedonic Models: An 

Introduction to Mixed Geographically Weighted Regression and Geoadditive Models.  

In A. Baranzini, J. Ramirez, C. Schaerer, and P. Thalmann, editors, Hedonic Methods 

in Housing Markets: Pricing Environmental Amenities and Segregation, New York: 

Springer, 2008, 101–27. 

Goodman, A.C., and T.G. Thibodeau.  Housing Market Segmentation.  Journal of 

Housing Economics, 1998, 7:2, 121–43. 

Goodman, A.C., and T.G. Thibodeau.  Housing Market Segmentation and Hedonic 

Prediction Accuracy.  Journal of Housing Economics, 2003, 12:3, 181–201. 

Goodman, A.C., and T.G. Thibodeau.  The Spatial Proximity of Metropolitan Area 

Housing Submarkets.  Real Estate Economics, 2007, 35:2, 209–32. 

Matheron, G.  Traité de Géostatistique Appliquée, Tome I.  Mémoires du Bureau de 

Recherches Géologiques et Minières, No. 14.  Paris: Editions Technip, 1962. 

Neill, H.R., D.M. Hassenzahl, and D.D. Assane.  Estimating the Effect of Air Quality: 

Spatial versus Traditional Hedonic Price Models.  Southern Economic Journal, 2007, 

73:4, 1088–111. 

Pace, R.K., and R. Barry.  Quick Computation of Regressions with a Spatially 

Autoregressive Dependent Variable.  Geographical Analysis, 1997, 29:3, 232–47. 



 27

Pace, R.K., R. Barry, J.M. Clapp, and M. Rodriguez.  Spatiotemporal Autoregressive 

Models of Neighborhood Effects.  Journal of Real Estate Finance and Economics, 

1998, 17:1, 15–33. 

Pace, R.K., and O.W. Gilley.  Using the Spatial Configuration of the Data to Improve 

Estimation.  Journal of Real Estate Finance and Economics, 1997, 14:3, 333–40. 

Pavlov, A.D.  Space-Varying Regression Coefficients: A Semi-Parametric Approach 

Applied to Real Estate Markets.  Real Estate Economics, 2000, 28:2, 249–83. 

Thibodeau, T.G.  Marking Single-Family Property Values to Market.  Real Estate 

Economics, 2003, 31:1, 1–22. 

 

Acknowledgments 

We thank Martye Scobee for assistance with the transactions data and Elizabeth Riesser 

for preparing the transactions groups and map.  Helpful comments from two anonymous 

reviewers are greatly appreciated. 

 



 28

Exhibit 1  Sample Means 

 
Variable 

 
Mean 

Standard 
Deviation 

 
Minimum 

 
Maximum 

Panel A: Characteristics from Tax Assessment Data (n = 12,982)    

Sale price ($) 115,478 66,478 25,000 420,000 

Land area (square feet) 9,277 3,783 2,178 21,780 

Floor area (square feet) 1,468 618 432 5,180 

1.5 or 2 bathrooms 0.38 — 0.00 1.00 

2.5 or more bathrooms 0.22 — 0.00 1.00 

Age of house 37.7 27.8 0.0 99.0 

Partial basement 0.12 — 0.00 1.00 

Full basement 0.51 — 0.00 1.00 

Central air conditioning 0.77 — 0.00 1.00 

Fireplace 0.52 — 0.00 1.00 

Number of garages 1.11 0.87 0.00 2.00 

2nd quarter 0.28 — 0.00 1.00 

3rd quarter 0.28 — 0.00 1.00 

4th quarter 0.23 — 0.00 1.00 

Panel B: Characteristics of Transaction Groups (n = 60)    

Land area (square feet) 9,260 2,259 4,390 14,324 

Floor area (square feet) 1,455 411 922 2,578 

1.5 or 2 bathrooms 0.39 0.16 0.12 0.74 

2.5 or more bathrooms 0.21 0.24 0.00 0.87 

Age of house 37.9 22.0 4.2 84.2 

Partial basement 0.12 0.08 0.00 0.29 

Full basement 0.51 0.19 0.09 0.93 

Central air conditioning 0.77 0.18 0.29 1.00 

Fireplace 0.51 0.29 0.09 0.98 

Number of garages 1.10 0.38 0.44 1.93 

2nd quarter 0.28 0.03 0.22 0.34 

3rd quarter 0.28 0.03 0.20 0.33 

4th quarter 0.23 0.04 0.17 0.34 

x-coordinate (feet) 1,226,600 30,140 1,171,365 1,283,376 

y-coordinate (feet) 258,644 20,175 220,561 300,444 
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Exhibit 1  Sample Means (continued) 

 
Variable 

 
Mean 

Standard 
Deviation 

 
Minimum 

 
Maximum 

Panel C: Hedonic Prices for Transaction Groups (n = 60)     

Intercept 10.8 0.4 9.8 11.7 

Land area 3.04×10-5 5.50×10-5 -7.32×10-5 16.3×10-5 

Land area squared -1.04×10-9 2.41×10-9 -8.67×10-9 3.68×10-9 

Floor area 2.17×10-4 0.93×10-4 -1.30×10-4 3.93×10-4 

1.5 or 2 bathrooms 0.09 0.12 -0.20 0.61 

2.5 or more bathrooms 0.16 0.15 -0.34 0.67 

Age of house 0.00 0.01 -0.02 0.03 

Age of house squared 0.08×10-4 1.41×10-4 -3.71×10-4 5.49×10-4 

Partial basement 0.12 0.09 -0.11 0.37 

Full basement 0.14 0.06 -0.06 0.26 

Central air conditioning 0.06 0.09 -0.33 0.20 

Fireplace 0.07 0.05 -0.02 0.24 

Number of garages 0.04 0.03 -0.09 0.13 

2nd quarter 0.04 0.06 -0.14 0.17 

3rd quarter 0.06 0.05 -0.01 0.21 

4th quarter 0.06 0.06 -0.10 0.19 

Notes: Default categories (not shown) are 1 or fewer bathrooms, no basement, and the 1st quarter.  For the 

estimation results summarized in Panel C, the dependent variable is the natural logarithm of sale price.  



Exhibit 2  Census Block Groups, Transaction Groups, and Clusters 
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Exhibit 3  Sample OLS Estimations 

 
 
Variables 

 
No Submarket 

Variables 

 
 

With 8 Clusters 

With 60 
Transaction 

Groups 

Intercept 10.4** 10.7** 10.9** 

Land area (square feet) 3.84×10-5** 3.68×10-5** 2.92×10-5** 

Land area squared -1.20×10-9** -1.10×10-9** -0.90×10-9** 

Floor area (square feet) 3.16×10-4** 2.67×10-4** 2.36×10-4** 

Bathrooms (default is 1 or less)    

 1.5 or 2 0.113** 0.083** 0.066** 

 2.5 or more 0.191** 0.147** 0.122** 

Age of house -0.003** -0.005** -0.007** 

Age of house squared -1.47×10-5** 0.05×10-5     2.24×10-5** 

Basement (default is no basement)    

 Partial 0.129** 0.133** 0.123** 

 Full 0.156** 0.160** 0.137** 

Central air conditioning 0.178** 0.125** 0.103** 

Fireplace 0.146** 0.107** 0.084** 

Number of garages 0.040** 0.041** 0.039** 

Quarterly dummies (default is 1st quarter)    

 2nd quarter 0.039** 0.043** 0.036** 

 3rd quarter 0.058** 0.061** 0.058** 

 4th quarter 0.056** 0.067** 0.063** 

R2 0.697 0.753 0.784 

Notes: The dependent variable is the natural logarithm of sale price.  These results are for the first random 

estimation sample (n = 9,600).  The symbols * and ** denote significance at the 5% and 1% levels, 

respectively.  The estimates for the submarket (cluster and transaction group) dummies are not reported. 
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Exhibit 4  Prediction Accuracy Statistics 

 
 
 
 
Statistic 

 
 
 

 
OLS 

OLS with 10 
Nearest 

Neighbor 
Residuals 
Variable 

 
 

Geostatistical 
(Robust 

Exponential) 

Median of average absolute error ($)    

 Without submarkets 22,027 18,932 18,356 

 With 8 clusters    

  Single equation 19,837 19,592 17,133 

  Multiple equations 19,081 20,621 — 

 With 60 transaction groups    

  Single equation 18,145 17,600 16,678 

  Multiple equations 19,225 — — 

 Trend surface 19,926 — — 

Median of average absolute relative error (%) 

 Without submarkets 23.7 19.9 19.4 

 With 8 clusters    

  Single equation 20.9 20.6 18.5 

  Multiple equations 20.1 21.6 — 

 With 60 transaction groups    

  Single equation 19.1 18.6 18.0 

  Multiple equations 19.8 — — 

 Trend surface 21.3 — — 

Median percentage of predictions within 10% 

 Without submarkets 36.5 41.9 42.3 

 With 8 clusters    

  Single equation 40.3 40.7 45.5 

  Multiple equations 42.4 38.4 — 

 With 60 transaction groups    

  Single equation 44.0 45.4 47.4 

  Multiple equations 43.4 — — 

 Trend surface 37.5 — — 
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Exhibit 4  Prediction Accuracy Statistics (continued) 

 
 
 
 
Statistic 

 
 
 
 

OLS 

OLS with 10 
Nearest 

Neighbor 
Residuals 
Variable 

 
 

Geostatistical 
(Robust 

Exponential) 

Median percentage of predictions within 20% 

 Without submarkets 63.4 70.6 71.1 

 With 8 clusters    

  Single equation 69.0 69.3 74.0 

  Multiple equations 70.5 66.3 — 

 With 60 transaction groups    

  Single equation 72.9 74.0 75.2 

  Multiple equations 70.8 — — 

 Trend surface 66.4 — — 

 


