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Abstract  
 
Kew words:  Housing starts, completions, economic aggregates residential property 
cycles, causal relationships, time series models. 
 
A number of causal and non - causal approaches to forecasting private new housing 
starts in Australia are considered in this paper.  Simple time series models are 
developed in Excel and more complex ARIMA models are estimated using the popular 
econometric software SHAZAM.  Combining models is also discussed. 
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Interrelationships between housing starts and the state of the economy is briefly 
examined. 
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Introduction  
 
This paper attempts to model quarterly private new housing starts in Australia using 
AUSSTATS historical data1 for a sample period that spans the quarters 1970(1) to 
1998(2) inclusive - a total of 114 observations. An out of sample period that spans the 4 
quarters :1998(3) to 1999(2) is also used to gauge the relative forecasting performance 
of various alternative models. Note that even though historical data on private new 
housing starts were available going back to 1955(3), it was decided to ignore this data 
on the grounds that the behaviour of this variable was quite different prior to 1970. See 
Chart 1 below for some visual confirmation of this assertion. 
 

 
 

Chart 1 : The Behaviour of Private New Housing Starts - Pre and Post 1970 
 

 The models considered in this paper are primarily non-causal models.  These 
non-causal forecasting models, range from the fairly naive to the more complex. 
A complete listing of the estimated models is as follows: 

 
• The single exponential smoothing model  (sxsm) 
• Brown's double exponential smoothing model (dxsm) 
• Holt's exponential smoothing model (hxsm) 
• Winter's exponential smoothing model (wxsm) 
• The classical decomposition of time series model (cdtsm) 
• The linear multiple regression trend model with seasonal dummy variables 

(sdtm) 
• The trigonometric seasonal forecasting model (tsfm) 
• ARIMA 

 
 In addition a number of causal relationships are explored to investigate more 

general economic relationship 
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The remaining part of this paper is divided into 4 sections. Section 1 is devoted to a 
discussion of non-causal forecasting models of the non-ARIMA variety. Section 2 is 
concerned with the estimation of an appropriate ARIMA model. Combining models 
is considered next in Section 3 and section 4 discusses causal relationships. Finally, 
Section 5 provides a conclusion to the work undertaken in this paper and offers 
suggestions for future research in this area. 

 
Section 1 Non Causal Models other than Arima 
 

All the models considered in this section were estimated within the Excel 
spreadsheet environment. The various parameters of the sxsm, dxsm, wxsm and 
hxsm models were obtained with the use of the Solver tool available in Excel2. Use 
was also made of Excel's Regression Analysis tool to arrive at estimates of the 
cdtsm, sdtm and tsfm models3. Finally, the Shazam software program was used to 
test for the existence of autocorrelation in the residuals of all the models mentioned 
in this paragraph. 

 
In the discussion of all models considered in this paper, the following notation will 
be employed. 
 
Yt denotes private new housing starts at quarter t 
Ŷ  t denotes predicted or forecasted private new housing starts at quarter t 
 
 

Single Exponential Smoothing model  (sxsm) 
 
The  single exponential smoothing model is normally used for situations where the 
data are not subject to a trend. The general form of the sxsm model is given by : 
 
Ŷ  t+1 = αYt + (1 - α)Ŷ  t or  Ŷ  t+1 = Ŷ  t+ α(Yt - Ŷ  t)  (1.0) 
 
where 0 ≤ α ≤ 1 is a smoothing constant.  
 
Excel's Solver tool was used to find the α value that minimised mean square error 
(MSE) for expression (1.0) over the sample period. This value was found to be 
α = 1, so that the eventual estimated model took the form :  
 
Ŷ  t+1 = Yt   (1.1) 

 
 
Brown's Double Exponential Smoothing model (dxsm) 

 
The double exponential smoothing model is used to forecast time series data that 
enjoy a linear trend. The dxsm forecasting model may be written as: 
 
Ŷ  t+τ = at  +  btτ (2.0) 

 
where the analyst wishes to make a forecast τ periods into the future based on the 
most current estimate of the intercept at and slope coefficient bt at time t. Both  at 
and  bt are functions of St - an exponentially smoothed value of Yt at time t as well 
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as SSt - an exponentially smoothed value of St at time t.4  In estimating the above 
model, initial estimates of the intercept and slope - ao and bo -  were arrived at by 
using a standard least squares procedure applied to the sample data set as 
recommended by Hanke and Reitsch (1998, p161). In turn, (ao, bo) are used to 
generate the initial values for St and SSt at t = 0. Finally, the smoothing constant 0 ≤ 
α ≤ 1 that is employed for both the single and double exponentially smoothed Y-
values is chosen in such a way as to minimise MSE over the sample period.  

 
The optimal value of the smoothing constant turned out to be α = .54. By the final 
observation of the sample period the dxsm forecasting model was given by :  
 

Ŷ  t+τ = 25561.03  +  695.70τ       t =114 (2.1) 
 
 

Holt's Exponential Smoothing Model (hxsm) 
 
Like the dxsm model (discussed above), the hxsm model is used to forecast time 
series data characterised by a linear trend. Whilst the eventual hxsm forecasting 
model has much the same outward appearance as the one set out in expression (2.0), 
the actual mechanism by which the (at bt) pairs are adjusted at each time period is 
quite different from that of the dxsm model 5. 
 
By the final observation of the sample period, the hxsm forecasting model was 
given by:  
 
Ŷ  t+τ = 25838.0  +  250.6τ       t =114 (3.0) 
 
As with the dxsm model, the hxsm model is sensitive to the starting values given to 
the intercept and slope values. The approach taken here is one recommended by 
Hanke and Reitsch (1997, p.163 - 164). In particular, they suggest that a1 be taken 
as the average of a few past observations and that b1 may be estimated by using the 
slope of the trend equation obtained from past data 6. For this study, the data for the 
8 quarters preceding 1970(1) were used to estimate (a1, b1). 

 
 

Winter's Exponential Smoothing Model (wxsm) 
 
Winter's exponential smoothing model  is specifically designed to forecast time 
series that are subject to a linear trend as well as multiplicative seasonal influences. 
The wxsm forecasting model may be written as : 
 
Ŷ  t+τ = {at  +  btτ}St-L+τ (4.0) 
 
where the parenthesised term in expression (4.0) has an analogous interpretation to 
the right hand side of expression (2.0); namely it represents a straight line trend 
forecast. The remaining term - St-L+τ - represents the latest available seasonal index 
number that is used to adjust the parenthesised forecast for seasonality. The only 
remaining term to explain is the "L" that appears in the subscript of the seasonal 
index variable; it represents the length of seasonality or 4 in the case of the present 
application which deals with quarterly data. 
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As with most smoothing models that are quite sensitive to initial settings, several 
different approaches are available for providing the commencing values required for 
the model estimation process7. Two approaches were considered; the first being a 
variant of one suggested by Flaherty et al (1999, pp. 454-455) and the other by 
Hanke and Reitsche (1997, pp. 166). As will be seen subsequently in this paper, the 
former (latter) generated superior results in the out of sample period (sample 
period).  
 
By the final observation of the sample period, the first of these forecasting models 
(referred to as wxsm1)was given by:  
 

Ŷ  t+τ = (25551  +  43τ )St-L+τ      t =114 (4.1) 
 
and somewhat surprisingly, no exponential smoothing adjustment to the initial 
seasonal indices ensued throughout the sample period8. The unvarying seasonal 
indices were as follows : 

 
Mar Qtr Index   0.9655  
Jun Qtr Index    1.1070   
Sep Qtr Index  1.0540   
Dec Qtr. Index   0.9698 

 
The second of these forecasting models (referred to as wxsm2) was given by :  
 
Ŷ  t+τ = (26280  +  64τ )St-L+τ      t =114 (4.2) 
 
Again, no exponential smoothing adjustment to the initial seasonal indices 
eventuated throughout the sample period9. The unvarying seasonal indices were as 
follows : 

 
Mar Qtr Index   0.9621  
Jun Qtr Index    0.9828  
Sep Qtr Index  1.0725  
Dec Qtr. Index   0.9826 

 
 

The Classical Decomposition (cdtsm) and Seasonal Dummy (sdtm) models 
 
Like the previous model, both the classical decomposition model (cdtsm) as well as 
the multivariate seasonal dummy and trend model (sdtm), attempt to forecast a time 
series that is subject to a linear trend and seasonal influences. 
 
The cdtsm model was obtained using a very traditional approach illustrated by 
Levin (1987, Ch.14). The general form of the quarterly forecasting model is given 
by :  
 
Ŷ  t = {a  +  bt}Sq (5.0) 
 
where it is assumed that the analyst wishes to obtain a seasonally adjusted trend 
forecast for  t periods from a pre-determined base period (in the case of the present 
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application this is 1969(4); the time period immediately preceding that of the first 
observation of the sample period). The a and b appearing in expression (5.0) are the 
unvarying intercept and slope coefficient of a linear trend line and Sq is an 
appropriate multiplicative seasonal index for the quarter q that corresponds to time 
period t.  
 
The actual cdtsm model 10 that was estimated over the sample period is given by : 
 
Ŷ  t = {22526.58  +  27.37t }Sq  (5.1) 
 
where t = 0  at 1969(4) and the multiplicative seasonal indices {Sq } were as 
follows: 
 

Mar Qtr Index   0.9361  
Jun Qtr Index    1.0128   
Sep Qtr Index  1.0384  
Dec Qtr. Index   1.0127 

 
Estimation of the sdtm model proceeded along conventional lines illustrated by 
Flaherty et al. (1999, p.467-468). The general form of this model is given by: 
 
Ŷ  t = {a  +  bt }+ b1S1 +  b2S2 +  b3S3 (5.2) 
  
where the parenthesised portion of expression (5.2) performs much the same role as 
that which appears in expression (5.0). Namely, it is designed to capture the long 
term secular growth of the series. On the other hand, Sq appearing in expression 
(5.2) denotes a   zero-one seasonal dummy variable for the qth quarter (q = 1 to 3). 
Moreover, its slope coefficient bq is designed to capture the seasonal impact that 
this quarter has on quarterly housing starts.11  Note that there is no dummy variable 
for the fourth quarter. The seasonal impact of this quarter - which acts as a 
benchmark quarter - is incorporated within the intercept term a.12  

 
Reproduced below is the actual sdtm model that was estimated over the sample 
period through the application of multiple linear regression. The estimated model is 
accompanied by diagnostics, with bracketed t-values appearing beneath the 
estimated coefficients. 
 
Ŷ 

t =
  

22804.09
[24.91]   

 +
   

27.73t
[2.67]  

- 1811.98S1
 [-1.87]  

- 24.02S2
[-.02]  

+ 637.55S3
  [.65]    (5.3) 

 

R2 = .12  –R 2 = .08 F = 3.60 DW = .31  
 

The above model yields a disappointingly low adjusted –R 2, and although the F 
statistic indicates that the overall relationship is significant at the 1% significance 
level, it appears that none of the seasonal dummy variables have any significant 
impact on housing starts at the 5% significance level. Finally, the DW statistic 
indicates the presence of significant first order serial correlation in the disturbance 
term. 
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Trigonometric Seasonal Forecasting model (tsfm) 
 
The final model considered in this section of the paper is a trigonometric seasonal 
forecasting model whose estimation is illustrated by Flaherty et al. (1999, pp. 469-
470). The general form of this forecasting model13 - as applied to quarterly data - is 
reproduced below:  
 

Ŷ  t = a + b1t + b2Cos⎝⎜
⎛

⎠⎟
⎞2πt

4   + b3Sin⎝⎜
⎛

⎠⎟
⎞2πt

4   + b4⎩
⎨
⎧

⎭
⎬
⎫

tCos⎝⎜
⎛

⎠⎟
⎞2πt

4   + b5⎩
⎨
⎧

⎭
⎬
⎫

tSin⎝⎜
⎛

⎠⎟
⎞2πt

4   + b6Yt-1 (6.0) 

 
Although the full model in expression (6.0) was estimated, a number of explanatory 
variables were found to be statistically insignificant and were subsequently dropped 
from a more compact model whose estimate is presented below : 
 

Ŷ 
t =
  3536.21

  [2.96]  -1044.23
   [-3.95] ⎩

⎨
⎧

⎭
⎬
⎫

Cos⎝⎜
⎛

⎠⎟
⎞2πt

4
 

 -21.63
 [-5.52]⎩

⎨
⎧

⎭
⎬
⎫

tSin⎝⎜
⎛

⎠⎟
⎞2πt

4
 

 + 0.85Yt-1
[17.40]   (6.1) 

 

R2 = .75  –R 2 = .74 F = 108.35 DW = 1.75 h = 1.57 
 

The above model yields a surprisingly high adjusted –R 2, with the F statistic 
indicating that the overall relationship is highly significant. The bracketed t-
statistics indicate that the intercept and slope coefficients of all explanatory 
variables differ significantly from zero at the 1% significance level. Finally, 
Durbin's h statistic indicates the absence of significant first order serial 
autocorrelation in the disturbance term at any reasonable significance level. 
 

Comparative Performance of Simple Time Series Models 
 

In Table 1 below,  find summary diagnostics for each of the models estimated in 
Section 1 over the sample period. Examination of the mean percentage error (MPE) 
diagnostic provides an appreciation of the degree of forecasting bias associated with 
each of the models. The least biased model appears to be the dxsm model whose 
MPE is .05 of one percent ! However, three other models - sxsm, wxsm1 and 
wxsm2 - enjoy MPE values that are very close to 0%.  
 
The mean squared error (MSE) diagnostic which effectively penalises models with 
large forecasting errors, suggests that the best performers are the wxsm1 and 
wxsm2 models. These two models also perform best according to the two remaining 
diagnostics in Table 1 : the mean absolute deviation (MAD) and the mean absolute 
percentage error (MAPE).  The former diagnostic is a useful measure when the 
analyst's intent is to measure the magnitude of average forecasting error in much the 
same units as the initial series. On the other hand,  if the focus is on the average 
relative magnitude of the forecasting error in relation to the original values, the 
MAPE would be the appropriate diagnostic by which to gauge the performance of 
competing forecasting models. The two poorest performing models - cdtsm and 
sdtm - have almost identical diagnostics. 
 

 Model MAD MAPE MSE MPE 
Single exponential smoothing sxsm 1932 8.09% 5,742,855 -0.30% 
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Brown's double exponential smoothing dxsm 2132 8.97% 7,072,559 0.05% 
Winter's exponential smoothing wxsm1 143 0.58% 30,537 -0.47% 
Winter's exponential smoothing wxsm2 98 0.40% 14,266 -0.34% 
Holt's exponential smoothing hxsm 1927 8.12% 5,804,286 -1.48% 
Classical decomposition cdtsm 2908 12.32% 12,705,235 -2.19% 
Seasonal dummy variables sdtm 2909 12.33% 12,727,721 -2.19% 
Trigonometric seasonal forecasting tsfm 1449 6.09% 3,642,779 -0.62% 
 

MAD refers to the mean absolute deviation  
MAPE to the mean absolute percentage error  
MSE to the mean square error  
MPE to the mean percentage error  

Table1: Performance of Models over Sample Period 
 

 
In Table 2, diagnostics have been computed for each of the models in the out of 
sample period. Since, this only  comprises a total of four quarters, this is clearly too 
short a span of time to arrive at a definitive conclusion as to which of the models 
performs best beyond the sample period. However, the following tentative 
observations may be made. 

 
Model  MAD MAPE MSE MPE 

 
 
sxsm 2011 8.18% 5604328

 
-0.48% 

dxsm 2424 10.25% 9449662 -0.42% 
wxsm1 818 3.53% 1651037 -3.39% 
wxsm2 1561 6.53% 3765044 -6.53% 
hxsm 1664 7.13% 5229824 -6.85% 
cdtsm 837 3.54% 1148899 -3.54% 
sdtm 866 3.68% 1278807 -3.65% 
tsfm 2561 10.29% 7110835 -6.92% 

 
 

Table 2 : Performance Beyond Sample Period 
 
 

Firstly, and perhaps surprisingly, the two poorest performing models over the 
sample period - cdtsm and sdtm - enjoy the best two MSE figures and the second 
and third best MAD and MAPE figures. Secondly , whilst wxsm1 and wxsm2 were 
the best performing models over the sample period, only wxsm1 reigns supreme 
beyond the sample period as far as the MAD and MAPE criteria are concerned. 
Finally, it is the sxsm and dxsm models that seem to provide the least biased 
forecasts beyond the sample period. The authors await further observations, before 
they can reach a definitive conclusion regarding the relative performance of the 
studied models. 

 
The entries in Table 3, are p-values for the Ljung-Box-Pierce test statistics14 
determined for the residual autocorrelations at successive lags for each model listed 
in Table 1. These statistics suggest that there is significant serial correlation 
amongst the residuals of each model beyond a lag of 4. What is particularly 
surprising is that two of the models that purport to model seasonality  - wxsm1 and 
tsfm - yield a significant residual autocorrelation coefficient at the fourth lag. This 
suggests that neither of these so called seasonal models are properly accounting for 
the impact that seasonality has on the original series. 
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 Model

 
 

 
sxsm 

 
dxsm 

 
wxsm1 

 
wxsm2 

 
hxsm 

 
cdtsm 

 
sdtm 

 
tsfm 

Lag   
 
1 

 
0.693 0.272 0.000 0.000 0.691 0.000 0.000

 
0.201 

2 0.424 0.022 0.000 0.000 0.423 0.000 0.000 0.001 
3 0.556 0.043 0.000 0.000 0.553 0.000 0.000 0.004 
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 
5 to 24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 
The entries in this table indicate p-values for the Ljung-Box-Pierce test 
statistics determined for the residual autocorrelations at successive lags for each 
model estimated in Section 1. 
 

Table 3 : Box-Ljung-Pierce Analysis of Model Residuals 
 
 
Section 2 Arima Modelling  

 
This section is devoted to the development of an appropriate seasonal autoregressive 
integrated moving average (ARIMA) model15 for private new housing starts. 
 
Employing the same notation as Bowerman and O’Connell(1999, p.570), the general 
form of a seasonal ARIMA model is given by : 
 

φp(B)φP(BL)Zt = δ +  θq(B)θQ(BL)at (7.0) 
 
where: 
 
B denotes the backshift operator.16

 
Zt  denotes a stationary variable17 that is obtained through an appropriate 

transformation of the original series of interest; this being private new housing 
starts in the case of the present paper. 

 
φp(B) denotes the nonseasonal autoregressive operator of order p.18

 
φP(BL) denotes the seasonal autoregressive operator of order P.19

 

θq(B) denotes the nonseasonal moving average operator of order q.20

 

θQ(BL) denotes the seasonal moving average operator of order Q.21

 

δ denotes a constant term.22

 
at  denotes a classically well behaved disturbance term.23

 
The  Shazam software program was used to implement all four iterative stages of the 
Box Jenkins methodology 24 for arriving at an appropriate ARIMA model including 
forecasts beyond the sample period. 
 
The original data series was found to be non-stationary. Consequently, a search was 
made for a plausibly stationary series for which an adequate ARIMA model could be 
fitted. A total of 36 different historical series - including the original series - were 
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investigated for stationarity. The original series was subjected to all combinations of 
three levels of regular (i.e. non-seasonal) differencing ( d = 0, 1 and 2) and three levels 
of seasonal differencing (D = 0, 1 and 2). This procedure was repeated for three 
separate pre-differencing transformations of the original series; the square root of the 
original series, its quartic root and finally its logarithm. A total of 12 plausibly 
stationary series were identified. However, in only two cases was a reasonably adequate 
model fitted. In both cases the modelled series had not been subjected to a pre-
differencing transformation. 
 
The first of these estimated models - ARIMA1 - took the form : 
 
(1 - φ̂ 1B - φ̂ 2B2)(1 - φ̂ 1,4B4 - φ̂ 2,4B8)Zt = et 
 
where : Zt = (1 - B4)(1 - B)2Yt  and  et denotes the residual 
 
The second of these estimated models - ARIMA2 - assumed the form : 
 
(1 - φ̂ 1B - φ̂ 2B2)(1 - φ̂ 1,4B4 - φ̂ 2,4B8 - φ̂ 3,4B12 - φ̂ 4,4B16)Zt = et 
 
where : Zt = (1 - B4)2(1 - B)2Yt  
 
Table 4 below provides some useful diagnostics by which to compare the adequacy of 
both models over the sample period. 
 
 

  
Diagnostic  

 
 

Model 
 

–
R 2 

 
AIC 

 
SC 

 
Se 
 

 
ARIMA1 

 
.4187 

 
15.327 

 
15.426 

 
2051.3 

ARIMA2 .7459 15.565 15.717 2263.6 
 

In this table 
-
R 2 denotes the adjusted R2, AIC  (SC) denotes the 

logarithm of the Akaike Information Criterion Statistic (Schwartz 
Information Criterion Statistic) and Se denotes the standard error of 
estimate. 
 

Table 4 : Diagnostic Comparison of ARIMA Models 
 
 
 
 
The estimated parameters and their associated t-statistics are presented in Table 5. For 
both models, all estimated parameters appear to be significant at all reasonable 
significance levels. 
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Estimated 
Parameter 

 

 
ARIMA1 

 
ARIMA2 

 
φ̂ 1 

 
-.38812
[-4.311]  

 
-.40477
[-4.382]  

 
φ̂ 2 

 
-.41046
[-4.559]  

 
-.42244
[-4.582]  

 
 φ̂ 1,4 

 
-.63190
[-6.767]  

 
-1.4442
[-16.27]  

 
 φ̂ 2,4 

 
-.41693
[-4.680]  

 
-.41693
[-11.78]  

 
 φ̂ 3,4 

 
- 

 
-1.0977
[-8.66]   

 
φ̂ 4,4 

 
- 

 
-.52065
[-6.607]  

 
The bracketed entries in this table refer to the calculated              t-
statistics for the estimated parameters of the tentatively identified 
ARIMA model. The latter are the un-bracketed figures in this 
table. 
 
Table 5 : t-Values for the Estimated Parameters 
 

 
Table 6 below confirms that the residual autocorrelations of either fitted ARIMA model 
are not significantly different from zero at the 1% significance level. 
 
 Residual Auto-Correlations for the ARIMA1 Model
Lags       SE

 
01-
12 

 
.04 

 
.02 

 
-.01 

 
-.09 -.19 -.04 -.18 -.10 -.07 .02

 
-.08 

 
-.12 .10

13-
24 

.06 .07 .05 .10 .09 .00 .10 .05 .01 .08 -.08 -.13 .11

25-
36 

-.07 -.07 -.16 -.01 -.06 .09 .11 .07 .03 .12 .06 .02 .11

37-
48 

-.05 -.06 -.06 -.01 .02 .00 -.13 .02 -.04 -.04 .03 -.01 .12

49-
60 

.03 .09 .09 .07 .03 -.06 -.02 -.09 -.12 -.03 -.02 0.00 .12

       
 Residual Auto-Correlations for the ARIMA2 Model
Lags       SE

 
01-
12 

 
-.01 

 
-.01 

 
-.08 

 
-.07 -.15 -.05 -.12 -.11 .03 .02

 
.02 

 
-.14 .10

13-
24 

.11 .00 .10 -.12 .08 -.07 .10 -.08 .04 .08 .02 .07 .11

25-
36 

.02 -.07 -.10 -.02 -.12 .04 .04 -.04 -.04 .13 .05 .00 .11

37-
48 

.03 -.02 -.02 .05 .01 -.03 -.07 .05 -.05 -.09 .02 -.07 .12
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49-
60 

.01 .06 .07 .05 .07 -.06 -.02 -.06 -.11 -.01 .05 .00 .12

 
Table 6 : Residual Autocorrelations for Both ARIMA Models 

 
 
 
Again, for both models, the p-values of the Ljung Box Pierce Statistics for residual 
autocorrelations suggest that there is no pattern in the residuals at the 1% significance 
level.  
 
 
 P-Values for ARIMA2 Model

 
Lags 
 

      

 
05-
16 

 
.019 

 
.056 

 
.023 

 
.030 .044 .076 .092 .082 .107 .127

 
.161 

 
.154 

17-
28 

.162 .211 .204 .239 .294 .305 .310 .243 .263 .282 .173 .211 

29-
40 

.232 .224 .199 .209 .244 .200 .219 .254 .276 .291 .309 .351 

41-
52 

.393 .438 .355 .394 .425 .458 .494 .536 .570 .547 .514 .514 

53-
60 

.545 .551 .587 .553 .467 .497 .531 .569   

       
 P-Values for ARIMA2 Model

 
Lags       
 
07-
18 

 
.017 

 
.030 

 
.068 

 
.126 .202 .139 .129 .189 .189 .167

 
.184 

 
.208 

19-
24 

.206 .222. .270 .289 .348 .370 .430 .454 .427 .486 .418 .459 

31-
36 

.505 .492 .528 .580 .621 .666 .708 .731 .770 .801 .801 .817 

43-
48 

.828 .811 .839 .840 .866 .868 .866 .873 .868 .868 .887 .889 

55-
60 

.844 .866 .874 .894   

 
Table 7 : Box-Ljung-Pierce Analysis of Model Residuals 

 
 
Although the ARIMA1 model has a lower –

R 2 than ARIMA2, in some other respects it 
is the preferred model. Firstly, its AIC, SC and Se statistics are lower. Secondly it is a 
far less complex model; less parameter estimates are involved and the level of 
differencing is somewhat simpler. Finally, as will be seen subsequently in Table 8, the 
ARIMA1 model appears to be a much better forecasting model beyond the sample 
period. A comparison with the results in Table 2 reveal that ARIMA1 is the least biased 
in percentage terms of all non-causal models. On the other hand, its MAD, MAPE and 
MSE values are not as favourable as those pertaining to some of the other models 
considered earlier in Section 1. 
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Model  MAD MAPE MSE MPE 
 

 
ARIMA1 1197 4.81% 1617046

 
-0.17% 

ARIMA2 5949 24.38% 41949677 -24.38% 
 

MAD refers to the mean absolute deviation, MAPE to the mean 
absolute percentage error, MSE to the mean square error and MPE to 
the mean percentage error. 
 

Table 8 : Performance Beyond Sample Period 
 
 

Section 3 Combining Forecasts 
 

Combining forecasts typically improves the error statistics such as MAD and MSE, the 
criteria used to select a model.   The data series in question does not display a long run 
secular trend, seasonality is present but cyclical variations, while present, are subject to 
phase shifts.  The ARIMA modelling approach described above comes closest to 
satisfying the intuitive perception of the underlying data generating process. Due to the 
nature of the data, as well as the results reported in table 1, it was decided to incorporate 
some of the simpler time series models to form the combined model.25

 
The weights were determined using the Solver add-in in Excel and the error statistic 
minimised is MSE.  Weights are in the range, 0 ≤ wi ≤ 1 and sum to unity.  The results 
are provided in table 9.   The relative magnitude of the weights indicate the bias for a 
particular model.  For example, the largest weight is assigned to wxsm2, this results in a 
proportionate contribution of 48.08% by this model to the combined model.  This is 
consistent with the error statistics, given in table 1, for wxsm2 which produced the 
lowest MSE statistics.  The classical decomposition model is assigned the lowest 
weight, almost zero, suggesting that it has negligible influence in the combined model. 
 
The error statistics indicate an improvement over all models with the exception of 
Winter's exponential smoothing.  Purely statistical criteria is a poor basis upon which to 
make a judgement.  The algorithm employed to carry out the analysis will attempt to 
optimally meet the criteria imposed.  On the basis of the error statistics, Winter's model 
is optimal.  However, there may be additional information, or the informed view of the 
forecaster, that recognises the value of alternative models in the environment being 
forecasted.  A combined model may be employed to capture elements of the objective 
statistical criteria and the knowledge of the forecaster.  For example, a condition may be 
imposed which places an upper and/or lower bound on the contribution of a particular 
model to the combined model.  Such a restriction may be easily implemented in Excel. 

 
 Model Weight  
  
(1 - B4)(1 - B)2Yt ARIMA1 w1 0.1808 Error Statistics   
Winter's exponential smoothing1 WXSM1 w2 0.2578 MSE 363,268 
Winter's exponential smoothing2 WXSM2 w3 0.4808 MAD 1070 
Single exponential smoothing SXSM w4 0.0808 MAPE 2.043% 
Classical decomposition CDTSM w5 0.0000 MPE -0.210% 
 Sum of weights  1.0000  

 
Table 9 : Weights for the Combined Model and Error Statistics 
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Section 4 Causal Economic Modelling 

 
Housing starts are a leading economic indicator and are an important source of 
information when it comes to the general economic outlook.   Changes in starts directly 
impact on the housing and construction industry and indirectly impact on those 
industries that depend upon it.  Successive governments in the past have looked to the 
housing sector as an engine of economic growth and have introduced policy measures 
to take advantage of this sector's ability to stimulate the economy.  A key policy 
instrument traditionally has been the control of housing interest rates.  With the 
deregulation of the financial markets these controls have been removed and replaced 
with competitive market forces.   
 
Throughout the decade of the nineties several new mortgage providers have entered the 
market.  This has lead to greater competition among the established providers of 
mortgage finance, the banks, as well as in the industry as a whole.  This has resulted in 
historically low interest rates over most of this period.  The low inflation rates, and 
relatively highly levels of unemployment, during the nineties have also meant a 
downward pressure on interest rates.  Market expectations have come to reflect this 
environment and the outlook for the foreseeable future is for a moderate increase in 
interest rates. 
 
Despite the obvious theoretical link between interest rates and housing starts, attempts 
to model the relationship are difficult by the unsuitability of the data to test this 
relationship. The controls over interest rates has meant that a historical series is not 
truly reflective of market behaviour and tests incorporating this information are 
inappropriate. 
 
The decision to acquire a mortgage is based partly on the interest cost and also on the 
current and expected future wealth of the borrower.  A positive outlook for the future is 
likely to weigh much more heavily on the decision to take on a mortgage.  Thus the 
general state of the economy should influence changes in the housing sector.  A simple 
regression relationship between housing starts is provided in table 10. 
 
Regression 1 — Period Sept. 1959 to June 1999.     Number of  Obs = 160 
 Coefficients Standard Error t Stat F 95.10 
Intercept 15195.26 782.21 19.43 Adj. R Sq 0.37 
GDP 0.09 0.01 9.75 Std Error 3613.44 
 

Table 10.  Regression relationship Between GDP and Housing Starts 
 
The information contained in table 10 is overly simplistic and provides very little in the 
way of useful information.  In subsequent analysis the first 49 observations, the period 
1959 to 1969 inclusive, were removed for reasons discussed in the introduction.  A time 
trend was included in a modified regression and various lags of GDP.  The time trend 
was not significant, this is consistent with the previous ARIMA analysis, and lags of 
GDP other than 4, 12 and 16 were not significant.  Table 11 contains the results for 
GDP and lags of 4, 8 and 12. 
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 Coefficients Standard Error t Stat 
Intercept 16835.32 820.63 20.52 Obs. 148 
GDP 0.46 0.14 3.20 Std Error 3297.5 
GDP-4 -0.74 0.20 -3.72 R Sq 0.426 
GDP-8 -0.31 0.20 -1.58 Adj R Sq 0.410 
GDP-12 0.70 0.15 4.68 F 26.539 

 
Table 11.  Regression relationship with lagged values of GDP 

 
Using past values of GDP to explain housing starts has to be interpreted with care, the 
causal relationship is likely to be the other way around.  Our interest is in discovering 
whether the general state of the economy influences housing starts.  The results in table 
10 confirm that this is indeed the case; developers or builders take account of current 
and past GDP information.  The seasonal and cyclical nature of the data primarily 
account for the significance of the various lags.  This is apparent from table 12 when 
lagged values of the dependent variable (housing starts) are included in the model.  The 
previous quarter has the greatest impact, the twelfth quarter (3 years back) is also 
significant. 
 
  Coefficients Standard Error t Stat 
 Intercept 2540.9 2119.00 1.199 
 GDP 0.22529 0.1073 2.099 
 GDP4 -0.33226 0.1489 -2.232 R Sq 0.692 
 GDP8 -0.10751 0.1452 -0.741 Adj R Sq 0.675 
 GDP12 0.20933 0.1080 1.939 
 Starts-1 0.74973 0.0644 11.650 
 Starts-12 0.17802 0.0633 2.811 
 

Table 12.  Regression relationship with lagged values of GDP and Housing Starts 
 
 

Section 5 Conclusion and Prospects for Future Research 
 
The data is quarterly, which dampens the variability in the data, and a larger number of 
observations would be desirable for both the ARIMA and regression analysis.  The results 
reflect the quality of the data and a larger sample with higher frequency would be preferred.  
Higher frequency data would also allow more extensive testing to be carried out to establish 
causal relationships. 
 
The analysis has been carried on national data.  While there are many similarities across the 
different regions of Australia, it may prove useful to conduct a separate analysis for the 
different regions.  Housing cycles tend to differ between states and interstate migration 
impacts on the underlying trend.  This latter effect is difficult to identify in national data 
which is an aggregation of the states. 
 
Some consideration should perhaps be given to identifying the nature of housing demand.  
In the short run demand is determined by expectations about the state of the economy and 
the major variable of influence in the long term is population.   Medium term demand is 
more difficult to identify.  One approach that may be worthy of consideration is to use a 
stock adjustment model, however, at present a suitable data series to quantify stock does 
not exist. 
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Notes 
 
                                                           
1  The specific data on quarterly private new housing starts that were obtained through AUSSTATS 

were sourced from Table 1 of the Australian Bureau Statistics Catalogue Number 8750 (Building 
Activity - Dwelling Unit Commencements - Preliminary - Australia - Quarterly). 

 
2  A detailed explanation of how to use SOLVER to obtain the parameters of all the smoothing models 

considered in this section is to be found in Flaherty et. al. (1999, Ch. 13). 
 
3 A detailed explanation of how to use EXCEL and its regression analysis tool to estimate cdtsm, sdtm 

and tsfm is to be found in Flaherty et. al. (1999, Chs. 13). 
  
4 Both at  and bt are functionally related to two variables St and SSt  Their respective formulae are 

given by:  
 
 at = 2St -SSt   bt = ⎝

⎛
⎠
⎞α

1 - α  [St  - SSt] 

 
where St  is the exponentially smoothed value of Yt  at time t and SSt - known as the double 
exponentially smoothed value - is the smoothed value of St  at time t. Formulae for St and SSt are 
reproduced below: 
 
St = αYt  + (1 - α)St -1    SSt   = αSt   + (1 - α)SSt -1  
 
 

 It is observed that both St and SSt  employ the same smoothing constant 0 ≤ α ≤ 1 and that this same 
constant appears in the formula for bt. The value of α is chosen in such a way as to minimise MSE 
over the sample period. 

 
5 In the hxsm model, the adjustment equations for at and bt  at time period t are given by the following 

two smoothing equations : 
 
 at = αYt + (1 - α)(at-1 + bt-1)  bt = β(at - at-1) + (1 - β)bt-1 
 
 where 0 ≤ α, β ≤ 1 are smoothing constants that are chosen in such a way as to minimise MSE over 

the sample period.  
 
6 An alternative approach suggested by Hanke and Reitsche (1997, p162 - 163) in the absence of prior 

historical data, is to set a1 = Y1 and  b1 = 0. This approach was in fact attempted but the results were 
discarded. This is because the approach generated a rather trivial forecasting model - with a zero 
slope coefficient. By the last quarter of the sample period the resultant forecasting model was given 
by : 

 
  Ŷ t+τ = 25838.0 = Y114        t=114 
 
 which is equivalent to the constant term in expression (3.0)  
 
 The above result essentially arises because the optimal smoothing constants α and β (see footnote 5) 

took on the values of 1 and 0 respectively. This meant that at  = Yt  and bt = 0 at each quarter t of the 
sample period. Another interesting remark that should be made about this result, is that this particular 
hxsm model, when used for one period ahead forecasting, is exactly equivalent to the sxsm model 
estimated earlier with a smoothing constant α = 1 (see expression 1.1 ). For this reason, all 
diagnostics, relating to the residuals of either estimated model will be identical over the sample 
period. 

 
7 In the wxsm model, terms : at , bt and St are exponentially adjusted according to the following three 

smoothing equations : 
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 at = α⎝
⎛

⎠
⎞Yt 

St-L
  + (1 - α)(at-1 + bt-1) bt = β(at - at-1) + (1 - β)bt-1 St = γ⎝

⎛
⎠
⎞Yt 

at-1
  + (1 - γ)St-L 

  
 where 0 ≤ α, β, γ ≤ 1 are smoothing constants that are chosen in such a way as to minimise MSE over 

the sample period. The terms at and bt  have much the same interpretation as in the dxsm and hxsm 
models. On the other hand, an additional term : St denotes the smoothed estimate of the seasonal 
multiplicative index at time t. 

 
 As with most smoothing models that are quite sensitive to initial settings, several different 

approaches are available for providing the commencing values required for the model estimation 
process. The two approaches adopted in this paper are discussed below. 

 
 The first approach - referred to as wxsm1 - is a slight variation of one suggested by Flaherty et al 

(1999, pp. 454-455). More specifically, use is made of the eight quarters of data preceding the 
sample period.  The initial values ao and bo were arrived at as follows : 

 

 ao = ⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞∑

t =1

4
Yt

4     bo = 
1
4 ⎝

⎜
⎜
⎛

⎠
⎟
⎟
⎞∑

t =1

4
{ Yt +4 -Yt }

4   

 
 
 with the initial seasonal index for the qth quarter given by : 
 

 Sqo = 
4∞Yq

∑
n=1

4
Yi

   q = 1 ... 4  

 
 The second approach - referred to as wxsm2 - is one suggested by Hanke and Reitsche (1997, 

p.166). Here, ao is to be estimated by averaging a few values prior to the sample period and bo is to 
be estimated by using the slope of the trend equation fitted to prior data. Finally, the initial seasonal 
indices may be generated by using the method of Time Series Decomposition. In this paper, data for 
the eight quarters preceding the sample period were averaged to obtain ao. The estimate of the initial 
seasonal indices as well as bo were obtained by estimating a Classical Decomposition of Time Series 
Model applied to the forty quarters preceding the sample period. 

   
8 The set of smoothing constants that minimised MSE over the sample period were given by           (α, 

β, γ) = (.99, .03, 0). Hence, with γ set to zero, the seasonal indices remained unchanged throughout 
the sample period. 

 
9 The set of smoothing constants that minimised MSE over the sample period were given by           (α, 

β, γ) = (1, .01, 0). As in the case of wxsm1, a γ-value of zero, renders the seasonal indices invariant 
throughout the sample period. 

 
10 The trend component of the estimated model in expression (5.1) was estimated by fitting a least 

squares linear trend model to the deseasonalised values of {Yt } over the sample period. Diagnostics 
for this trend model were as follows : 

 

 
T =

  
22526.58
[33.32]  

+
   

27.37t
[2.68]   

-R2 = .06
    

-R2 = .05
   

-F = 7.19
   

 
 where the bracketed terms underneath the intercept and slope coefficients indicate t-values. The 

seasonal indices used for the deseasonalisation process described previously, were obtained using the 
Ratio to Moving Average Technique for measuring seasonal variation. This technique is described in 
most elementary business statistics textbooks. See for example, Levin (1987, pp.707). 

   
11  The dummy variables {Sq} appearing in expression (5.2) are zero-one variables. If time period t 

happens to be the qth quarter, then the seasonal dummy variable Sq = 1; and 0 otherwise. It should 
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therefore follow  that the estimated seasonal influence that the qth quarter exerts on housing starts is 
given by the slope coefficient bq of Sq. 

 
12 There is a very important technical reason for the deliberate omission of a dummy variable for the 

fourth quarter, this being that any one of the four dummy variables would be a linear combination of 
the other three. In multiple regression analysis, if any one explanatory variable is a linear 
combination of the others, then it is impossible to obtain the least squares estimating hyper plane. 
This is a problem referred to in the econometric literature as perfect multi-collinearity. 

 
13 In the right hand side of expression (6.0)  
 
 a + b1t   captures the long term linear trend of the series 

 b2Cos⎝
⎛

⎠
⎞2πt

4   +  b3Sin⎝
⎛

⎠
⎞2πt

4    captures the seasonality of the time series 

 b4⎩
⎨
⎧

⎭
⎬
⎫

tCos⎝
⎛

⎠
⎞2πt

4   + b5⎩
⎨
⎧

⎭
⎬
⎫

tSin⎝
⎛

⎠
⎞2πt

4   captures the change in seasonality across time 

 
 b6Yt-1 captures the influence that the previous quarterly 

 starts might have on current quarterly starts 
 
14 The p-values appearing in Table 3 were obtain using the SHAZAM econometric package (version 

8.0). 
 
15  ARIMA models attempt to reproduce the historical behaviour of a stationary time series. Such a time 

series is one whose mean and variance remain unchanged through time. 
 
16  The backshift operator B when applied to a time series observation Zt shifts its subscript one period 

backwards in time.  For instance: 
 
 BZt = Zt-1 

  
 B2Zt = B(BZt) = B(Zt-1) = Zt-2 
 
 BLZt = Zt-L 
 
17  If the time series of interest {Yt} is non-stationary, then it must be transformed into a stationary one 

denoted {Zt}. The general form of the transformation is presented below using the Bowermann and 
Cooper (1993, pp. 568-570) notation. 

 
 Zt = (1 - BL)D(1-B)dYt

* 
 
 where : 
 

B  denotes the backshift operator (described in Footnote 17) 
L  denotes the length of seasonality (with quarterly data L = 4) 
{Yt

*} denotes a suitable pre-differencing transformation of the series {Yt} designed to ensure that 
the transformed series enjoys constant variance over time. Commonly applied pre-
differencing transformations involve, the extraction of the square root, the quartic root and 
the logarithm of the original series {Yt}. Note that if the variability in the original series 
appears to remain constant over time, no pre-differencing transformation is required so that   
{Yt

*} is equivalent to {Yt} . 
d (D) denotes the level of regular (seasonal) differencing applied to the series {Yt

*} designed to 
ensure that the resultant series {Zt} fluctuates with constant variation about a constant 
mean. 

 
 For example, suppose { Zt } is stationary when { Yt

* } = {Yt }, d = 1,  D=1 and L = 4,  then : 
 
 Zt  = (1 - B4)1(1-B)1 Yt = (1 - B4)(1-B)Yt = (1 - B - B4 + B5)Yt = Yt - BYt - B4Yt + B5Yt  = 
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   = Yt - Yt-1 - Yt-4 + Yt-5  
  
18  The nonseasonal autoregressive operator of order p is given by : φp(B) = 1 - φ1B1 - φ2B2  - .. - φpBp 
 where:  φ1, φ2,  ...  φp are parameters that must be estimated from sample data. 
 
19 The seasonal autoregressive operator of order P is given by: φP(B) = 1 - φ1,L

BL - φ2,LB2L - .. - φP,LBPL 
 where:  φ1,L,  φ2,L,  ...  φP,L are parameters that must be estimated from sample data. 
 
20  The nonseasonal moving average operator of order q is given by : θq(B) = 1 - θ1B1 - θ2B2  - ... - θqBq 
 where:  θ1, θ2,  ... θq are parameters that must be estimated from sample data.  
 
21  The seasonal moving average operator of order Q is given by: θQ(B) = 1 - θ1,L

BL - θ2,LB2L - .. - θQ,LBQL 
 where θ1,L, θ2,L,  ... θQ,L are parameters that must be estimated from sample data. 
 
22  The constant term is given by: δ = µφp(B)φP(BL) where: µ  is the true mean of the modelled 

stationary series. 
 
23 This is a disturbance term that is normally distributed with a zero mean and constant variance. It is 

also serially uncorrelated  with constant variance across time.  
 
24 The Box Jenkins methodology is a four step iterative procedure that may be summarised as follows : 
 
 Stage 1 : Tentative Model Identification. The first part of this stage establishes whether or not  the 

historical series is stationary. As described in Bowermann and O’Connell (1993, pp. 521 - 528), 
temporal stability of the variance may be gauged by inspecting a scattergram of the series against 
time. Moreover, the absence of trend, at both the seasonal and nonseasonal level, may be confirmed 
by examining the sample autocorrelation function of the series. Note that if the original series of 
interest is deemed to be non-stationary, it must be transformed into one that is (see Footnote 18 for 
details). Having identified a stationary series, the analyst is in a position to undertake the second part 
of stage 1. This involves the tentative identification of a plausible ARIMA model that would 
generate the type of behaviour exhibited by the series' sample autocorrelation and partial 
autocorrelation functions. In undertaking this part of Stage 1, the authors chose to abide by the 
guidelines of model identification provided by Bowermann and O’Connell (1993, pp. 572-574). 

 
 Stage 2 : Estimation.  At this stage, the stationary historical data referred to at Stage 1 are used to 

estimate the parameters of the tentatively identified model. The algorithm used to estimate this model 
is described in White (1997, pp. 126 - 128). 

 
 Stage 3 : Diagnostic Checking. Here the analyst makes use of several diagnostics to judge the 

adequacy of the tentatively identified model that was estimated at Stage 2. These involve an 
inspection of the adjusted R2 , the t-statistics of each of the estimated parameters, conducting at 
various lags, a Box-Ljung-Pierce Test of serial autocorrelation of the residuals, generation of the 
sample autocorrelation function for the residuals to investigate whether the autocorrelations of 
residuals at low order or seasonal lags differ significantly from zero. If the estimated model is 
deemed to be inadequate, then the diagnostics may suggest a new improved model. 

 
 Stage 4 : Forecasting. Once an appropriate model has been identified and estimated it may be 

employed to forecast future values of the time series. 
 
25 Combining forecasting models using Excel is described in Flaherty et. al pp. 474-475. 

 


