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Abstract 

This article examines the possibility of dividing an urban 

housing market into a set of component submarkets in a way 

that is consistent with existence of one or more equilibrium 

hedonic pricing relationships. This is done by estimating an 

hedonic mixture model for the observed price. Two types of 

mixture model are estimated. The first is a standard fixed 

proportions mixture model, while the second is a spatially 

contextual mixture model. In both specifications, the null 

hypothesis of a single unified housing market is easily 

rejected. The exact number of submarkets is less clear, 

because some of the submarkets are too thin to obtain reliable 

regression estimates. Despite the results confirming multiple 

submarkets, my overall conclusion is that the prices for the 

vast majority of houses are described well by one or two 

equilibrium pricing relationships. 



1.0 Introduction 

This article is concerned with the possibility of dividing an 

urban housing market into a set of component submarkets. There 

is a growing literature on this topic. A central question in 

this literature is: What constitutes a (sub)market? In the 

literature, there are two basic approaches to defining housing 

submarkets. The most common approach is based on the notion 

that housing submarkets are composed of housing units which 

are close substitutes to each other, but which are poor 

substitutes for housing units in other submarkets (Grigsby, et 

al., 1987; Rothenberg et al., 1991). This definition of 

housing submarkets is expressed empirically through the 

classification housing units into submarkets based on their 

observed characteristics. For this reason, I refer to it as 

the market segmentation approach. Classification methodologies 

used to segment the market range from ad hoc definitions of 

submarkets to statistical methods, such as principal 

components, factor analysis or cluster analysis. The latter 

set of methodologies are based on a variety of housing and 

neighbourhood attributes, such as location, size, lot 

dimensions, view, etc. (Bourassa et al., 1997; Dale-Johnson, 

1987; Kendig, 1976; Kennedy, 1995; MacLennan and Tu, 1996; 

Smith and Kroll, 1989). 

The other approach to defining submarkets is based on the 

premise that the law of one price must hold for all housing 



units within a housing submarket; that is, units with the same 

attributes must have the same price. This means all housing 

units in a submarket have the same hedonic price ffinction. 

The corollary of this premise is that housing submarkets are 

distinguished by violations of the law of one price and, 

hence, differences in hedonic price ffinctions. This approach 

has not been used previously to define submarkets. Instead, it 

has been used to test whether a given segmentation of an urban 

housing market is valid. Examples of this procedure may be 

found in Bajic (1985), Dale-Johnson (1987), Gabriel (1984), 

Goodman (1981) and Schnare and Struyck (1976). 

Both these approaches are incomplete. The market segmentation 

approach suffers from both theoretical and empirical problems. 

First, it does not take the product-differentiated nature of 

the housing market into account. The key point of the seminal 

article by Rosen (1974) is that, under suitable conditions, a 

competitive equilibrium can exist in a product-differentiated 

market, whereby products with different characteristics are in 

demand/supply equilibrium across a unified market. Note that 

substitutability of the differentiated products is subsumed 

within the hedonic pricing relationship generated by the 

competitive equilibrium. Hence, the substitutability of 

housing units only becomes an issue at the margin where the 

hedonic relationship breaks down. This complicates empirical 

work considerably, as market segmentation rules based on 



housing attributes may not be linked in a meaningful way to 

housing submarkets. To resolve this problem, some form of 

market test needs to be built into the segmentation 

methodology. 

The regression problem associated with the market segmentation 

approach is one of switching regressions with unknown, 

exogenous, sample separation. When the sub-sample obtained 

from the segmentation method contains observations from one 

submarket only, unbiased regression parameters can be 

estimated by ordinary least squares. This is the standard 

hedonic result. Empirical problems emerge when housing units 

are allocated incorrectly to submarkets. When misallocation 

occurs, the parameter estimates of the hedonic regression will 

be inconsistent (Aigner 1973, Lee and Porter 1984). The 

misallocation of observations also causes problems for 

hypothesis testing. The data in the segmented sample have a 

mixture distribution with unknown mixing proportions. 

Therefore, tests that rely on the (asymptotic) normality of 

the regression disturbances are invalid. This includes the 

usual Wald test for equality of parameters used to test 

whether a given segmentation of an urban housing market is 

valid. I do not know of any literature giving an approximating 

distribution for this test. 



Obviously, existing applications of the law of one price 

approach suffer as much from the problems in hypothesis 

testing as does the segmentation approach. 

In this article, I tackle the problems above by estimating a 

mixture model for housing transaction prices. The model 

endogenously distinguishes submarkets based on departures from 

an equilibrium hedonic pricing relationship(s). Thus, there is 

market test of segmentation. I estimate two forms of the 

mixture model. The first form is based on constant mixing 

proportions, while the second is based on the spatial 

assumption that houses close to each other are more likely to 

be in the same submarket than houses far apart. The spatial 

assumption of the second model is itself based on the 

theoretical proposition that households will sort themselves 

across space according to their housing preferences. 

The paper is structured as follows. In section 2, I discuss 

the basic mixture model. In section 3, I examine the data used 

in my estimations. Section 4 contains a discussion of the 

results from my estimation of the mixture model. I develop the 

spatially contextual mixture model in section 5 and discuss 

the estimation results for this model. I conclude the paper in 

section 6. 

 

 
2.0 The Mixture Model 

I assume that there are M housing submarkets in the urban 

area. I examine the determination of the number of submarkets 



in section 2.2. Each submarket is characterised by the market 

conditional hedonic pricing model 

 
   pim = ximβm+ εm i=1,.--,Im

(1) 

where Pim measures the price of the ith housing unit in the 

mth housing submarket, xim is the (1xkm) vector of housing and 

neighbourhood attributes for this housing unit,βmis the (kmx 1) 

vector of regression parameters and εm is the regression 

disturbance. The disturbances εm are independently and 

identically normally distributed with mean 0 and variance σ2m 

These distributions are defined only over the sub-population 

of housing units in each market. 

When the sample observations can be separated into submarkets 

without error, the submarket pricing equations (1) can be 

estimated efficiently by ordinary least squares. When sample 

separation is unknown, bias, consistency and identification 

problems emerge. 

Suppose that one estimates the equations (1) by ordinary least 

squares based on imperfect sample separation. Lee and Porter 

(1984) show that the estimate βm converges in probability to a 

weighted average of the β1, , βM The weights in the average are 

the conditional probabilities of classifying an observation 

into submarket m given that the observation belongs in 

submarket j. Consequently, the coefficients Bm, m=l,..,M, are 

not estimates of the implicit prices of the dwelling 

characteristics, but are estimates of an unknown mixture of 

implicit prices. In addition to the inconsistency of the 



parameters βm, the estimates of the standard errors of the 

regressions, σ2

m are biased and the direction of the bias can 

not be determined a priori. On its own, this confounds 

residual based hypothesis tests. 

The inconsistency of the least squares estimate does not arise 

because of the definition of the submarket per sea, but from 

an inappropriate weighting of the observations in the 

subsample. Under least squares, an observation is given weight 

1 when it is in the submarket sample and weight 0 when it is 

not in the submarket sample. The correct weight for an 

observation is proportional to the probability that the 

observation is in the mth submarket. Given the correct 

weights, weighted least squares yields consistent estimates of 

the parameters of the submarket hedonic regressions (1). 

Unfortunately, the weights must be estimated simultaneously 

with the regression parameters. When prior sample separation 

information exists, the parameters can be estimated using a 

switching regression model. However, with no prior sample 



separation information (the usual case in hedonic estimation), 

a finite mixture model must be used'. 

In a finite mixture model, each observation on a house 

transaction is viewed as a random selection from a population 

of housing transactions generated by a mixture of M housing 

submarkets. Therefore, the observed dependent variable, pj, is 

the unconditional transaction price from the ith housing unit. 

The marginal probability that an individual transaction is 

drawn from the mth submarket is given by πm where 

 
M 
 ∑πm = 1 and πj ≥ j=1,. . .,M. (2) 

m=l 

These probabilities mirror the relative frequencies of houses 

across the submarkets. The 

probability density function for the ith observation is 

 

                   M 
    φ(Pi; Xi; ψm) = ∑πm φm φ(>(Pi; Xi; ψm)   (3) 

       m=1 

 

where φ((Pi; Xi; ψm) is the normal probability density function 

for the ith observation, when it is drawn from the mth housing 

submarket. In equation (3), the vector xi contains the housing 

characteristics used in all the housing submarket regressions 

(1). In many applications, the same housing attributes will be 

used in each submarket regression and xi=xim for all m. In 

other applications, the attributes in the hedonic regressions 



(1) may vary across the submarkets and x; will be the union of 

submarket specific attributes. For example, a particular 

geographical grouping of housing units may need extra view or 

location attributes to describe the properties. Alternately, 

there may be no variation in one or more attributes for houses 

in a submarket and, hence, the zero variation attributes must 

be deleted from the attribute set. The effect of the zero 

variation attributes is impounded in the constant term. Also 

in equation (3) ψm=(βmσ
2

m ) is the vector of parameters for the 

mth submarket and ψ =(π1,….πM; ψ1
- .. ψ

M
) iS the full parameter 

vector for the mixture distribution.2 

Since the observations on the transaction prices of housing 

units are independent and identically distributed, the 

log-likelihood, L(v), is the sum of the logarithms of the 

probability density functions for the observations in the 

sample. An estimate of v can be obtained as the solution to 

the equations 

∂L(ψ)/∂ψ = o .      (4) 

 
For the mixture model above, these can be analytically 

determined (see Lee and Porter 1984). As already noted, the 

estimates of the regression parameters ~m are weighted least 

squaresestimates. Similarly, the estimate of the submarket 

variance smis the weighted sum of 

squares divided by the expected degrees of freedom for the 

regression. For both sets of parameters, the weights are the 



posterior probabilities of submarket membership derived from 

the mixture distribution. For a given estimate of the 

parameters ~, these posterior probabilities are given by 

M 
ιim = πmφm(Pi;Xim;Ψ) / ∑ πjφj(Pi;Xim;Ψ)    (5) 
                   m=l 

 

where ιim = pr{observation i belongs to submarket m|xi,Ψ}.These 

estimated posterior probabilities may be used to segment the 

sample into submarkets according to the modal rule           

mi = argmax{ιimlm = 1,...,M}. 

Last, solving ∂L(ψ)/∂πm = 0 gives the estimates 

       N 
....      πm = ∑ ιim /N      m = 1,….M       (6) 
 
 

for the prior probabilities of submarket membership. 

 

Over time, a number of authors have noted the remarkably 

simple structures of the estimators. These authors have 

suggested a simple iterative solution for maximising the log 

likelihood and obtaining the parameter estimates. All of the 

suggestions are variants of the EM algorithm of Dempster, 

Laird and Rubin (1977). A complete discussion of the EM 



algorithm and its application to mixture models is contained 

in McLachlan and Basford (1988) or Titterington, Smith and 

Makov (1985). The most compelling feature of the EM algorithm, 

beyond its simplicity, is that log-likelihood value is 

monotonically increasing. Unfortunately, this is balanced by 

very slow convergence, particularly in the region of the root 

of likelihood. I use the EM algorithm to obtain initial 

estimates of the parameters, but refine the solution using 

Newton-Raphson. 

 
2.1 Parameter Identification 

 

In formulation above, all of the densities 4)m are normal. 

This creates an initial identification problem, because the 

mixture density _ will have the same value when the submarket 

labels m and n are interchanged in equation (3). In fact, 

since there are M! permutations of the submarket labels, there 

are M! models which yield the same value of _. This problem 

can be 

resolved quickly by imposing identification restrictions that 

order the submarkets. Aitkin and Rubin (1985) suggest imposing 

the restrictions zl27r22.. .2xM>O. In practise, this or any 

similar ordering restriction does not need to be imposed while 

estimating the parameters. The submarket indexes can be 

ordered as required after solving for the parameter estimates. 

A more pressing identification problem was first noted by 



Kiefer and Wolfowitz (1956) in the context of a two component 

mixture. They showed that the log-likelihood for a mixture of 

univariate normals with unequal variances is unbounded.3 

Hence, a global maximum likelihood estimate does not exist. 

Kiefer (1978) and Hathaway (1985) extended this result to more 

general mixtures. The lack of a global maximum does not stop 

one estimating the mixture model. There exists a sequence of 

roots to the likelihood equation (4) that is consistent and 

asymptotically efficient under suitable regularity conditions. 

In fact, the mixture model may have multiple roots, with each 

root corresponding to local maximum of the log likelihood. 

Because of this, one should estimate the mixture model from a 

variety of starting points. 

Alternately, identification restrictions can ensure the 

existence of a well identified solution. To derive the 

necessary restrictions, first note that the log-likelihood has 

a global maximum when the variances of the components are 

equal. Heuristically, it appears that restrictions on the 

variances of the regressions are needed to bound L. Hathaway 

(1985) demonstrates that a constrained global maximum exists 

when the parameter space is restricted to the region defined 

by 

6,2a622...2a6M ,, and 6M2a61 for any 0<aS1 Observe that the 

constraints are not very restrictive; they just ensure that 

the variances are finite for every submarket. If the true 

value of the mixture parameters v also lies in the constraint 



set, then the constrained global maximum is a strongly 

consistent estimator for v and is the largest local maximiser 

of the unconstrained likelihood maximisation problem. 

I do not impose Hathaway's restrictions in my estimations. 

Nevertheless, the estimated variances from my models satisfy 

the restriction when 0 < a < .17. Since a=1 corresponds to an 

equal variance model, an upper bound of a=0.17 demonstrates 

the necessity of expanding the range of the parameter space 

when dealing with housing submarkets. 

 

 

 

 
2.2 Tests for the Number of Submarkets 

 

There is no definitive test for the smallest number of 

submarkets, M, in a mixture of markets. 

The likelihood ratio test statistic X is obvious candidate for 

such a test. Unfortunately, the standard regularity conditions 

required for -2 lnk to have an asymptotic chi-squared 

distribution with degrees of freedom equal to the number of 

restrictions in the test are violated in a mixture model. To 

understand the basis of these violations, consider testing the 

null hypothesis of M versus M+1 submarkets. This can be 

accomplished by imposing a single restriction, 7tM+I=0 or by 

imposing the kM+g+1 restrictions pM+I=0 and 62M+l=0. The 



first approach places 1tM+l on the boundary of the parameter 

space. This is a direct violation of the regularity 

conditions. Under the alternate set of restrictions,7rM+l iS 

irrelevant, but even here the usual regularity conditions do 

not hold, but for more subtle reasons (Ghosh and Sen, 1985; 

Quinn and McLachlan, 1986). 

Despite the theoretical problems with the likelihood ratio 

test, the test is still used as a guide to the possible number 

of submarkets in the mixture (McLachlan and Basford, 1988). 

The use of the test is supported by several Monte Carlo 

studies. Wolfe (1971) examines the test of the null hypothesis 

of M=1 versus M=2 groups in a mixture of normals. He shows 

that the null distribution of 2c InS is approximately 

chi-squared with degrees of freedom equal to twice the number 

of restrictions (not including the mixing proportions) in the 

test. The constant c=(n-l/2m-2)/n, which is approximately 

equal to unity for large n.. Hernandez-Avila (1979) and 

Everitt (1981) confirm this result. 

 

Alternately, one might test the null hypothesis using the 

bootstrap distribution of -2 ln B. Efron and Tibshirani (1986) 

show that a large number of replications are needed to obtain 

accurate estimates of P-values. Even for simpler models than 

mixtures, over 350 replications are needed. While I agree with 

the advisability of calculating the bootstrap distribution, I 

do not do so because of the computational burden. 
 



3.0 Data 
 
 
The mixture model is estimated using transaction data for the 

City of Auckland, New Zealand. These data are drawn from the 

Valuation New Zealand (VNZ) transactions database and marketed 

by Headway Systems Ltd. VNZ is the federal government agency 

charged with maintaining the Torrens land registry for New 

Zealand. All property sales are registered with VNZ. The 

Headway Systems database does not contain all the fields in 

the VNZ database. What are missing are variables describing 

the interior layout of the dwelling, for example, the number 

of bedrooms and the number of bathrooms. 

The data used here are for detached residential units sold 

between 1995:Q4 and 1996:Q3. This was a time of high sales 

volume and it marked the end of a period rapid price 

appreciation. There are 4,712 observations in the sample. 

I present the summary statistics for my data set in Table 1. 

The average price of the housing units sold in 1996 was 

$307,592. The range of transaction prices underlying this mean 

price is extremely wide. The least expensive housing unit sold 

for $2,500; the most expensive housing unit sold for 

$3,250,000; and the standard deviation was $190,330. I explain 

this house price variation using the nine housing attributes 

in Table 1. The rest of this section is devoted to a 

presentation of the definitions of these housing variables and 

a discussion of possible limitations of my measures. 



The variable BUILT measures the date of construction, but not 

perfectly. The data file contains only a set of indicators for 

the decade of construction. The value of BUILT is the first 

year in the decade. BUILT is a proxy for pure depreciation 

and, in this role, it should have a positive effect on price. 

However, the BUILT variable is also a proxy for two other 

effects that confound its impact on price. First, because 

vintage of a housing unit is linked to its architectural 

style, BUILT captures the value of current household 

preferences for architectural style. This value of vintage 

related architectural styles could be either positive or 

negative. Anecdotal evidence suggests that some of the older 

styles are currently in demand and this will impart a negative 

effect to the BUILT variable. Second, like many new cities, 

Auckland was developed in successive waves emanating from its 

historic urban core. As a result, BUILT also measures distance 

from the CBD and this effect also imparts a negative sign. 

However, Auckland is now a multi-nucleated urban region, so 

the importance of distance to the CBD effect is not clear. 



Table 1 
 
Descriptive Statistics 
 
 
Variable Mean Std Minimum Maximum 
PRICE 307591.72 190330.65 2500.00 3249999.57 
BUILT 1945.78 25.86 1880.00 1990.00 
FLR 135.14 66.00 10.00 1990.00 
LANDO 0.31 0.46 0.00 1.00 
LAND 778.34 428.59 0.00 2431.00 
CHATTELS 13556.95 8522.51 0.00 89000.02 
AVER 0.79 0.41 0.00 1.00 
POOR 0.06 0.24 0.00 1.00 
T 0.35 0.21 0.00 0.88 
 
 
 

  
FLR is the floor area of the housing unit in square meters. 

The average house sold in Auckland in 1996 was 135 square 

meters (approximately 1,450 square feet). This is considerably 

smaller than the new homes constructed in the Auckland region, 

which are about 210 squares meters (approximately 2,300 square 

feet). 

 

LAND is the area of the lot in square meters. The average lost 

size was 778 m2 (approximately 8,400 square feet). 

Unfortunately, 31% of the transactions in the data file does 

not contain the lot area.4 Moreover, there is no a clear 

reason for the missing data. Rather than eliminate these 

transactions, I include the variable LAND0 in the regressions. 

LAND0 is an indicator variable which is assigned the value 

unity when the lot area is not recorded and is assigned the 

value zero when the lot area is recorded. In using this 

specification, I am assuming that the marginal prices of the 



other attributes do not depend on whether the lot area was 

recorded. 

 

The variable CHA'l l'ELS is the value of chattels in the 

dwelling unit. Since CHATTELS are mobile capital, the value of 

chattels should be fully capitalised into the price of the 

housing unit. On this basis, the house price elasticity of 

CHA'l'l'E;LS should equal their relative share in value, or 

approximately 4.4% in my sample. In past work with this data 

set, I have obtained much larger positive elasticities. This 

result suggests that CHATTELS is a proxy for the general 

quality of the interior space of the dwelling. 

AVER and POOR are indicator variables which measure whether 

the unit is in average or poor condition. The omitted category 

is good houses. Thus, both AVER and POOR should exert a 

negative effect on house price. These variables are included 

in the Valuation New Zealand database. They are based on the 

professional assessment of the Valuation New Zealand valuers 

(sic appraisers). 

The final variable is a time index, denoted by T. It equals 

the number of days from the October 1, 1995. It is included to 

capture inter-year price appreciation. The variable T is 

included because there was considerable price appreciation in 

the Auckland housing market in the time period of under 

examination. In the estimations, all the variables are log 

transformed and a log-log model is estimated. 
 



 
 
4.0 Mixture Model Results 
 

The mixture model described in section 2 separates the urban 

housing market into submarkets using the residuals from the 

hedonic models (1). The difficulty of this problem is 

highlighted in Figure 1. The map in Figure 1 shows the 

residuals from the single market hedonic model of the housing 

transactions. The residuals are divided into three groups: 

strongly negative residuals (large dots), which are more that 

1 standard error below zero, "neutral" residuals (small dots), 

which are between -1 and 1 standard errors from zero, and 

strongly positive residuals (large triangles), which are more 

that 1 standard error above zero. The figure shows that the 

vast majority of housing transactions are fit well by a simple 

model (R2=0.81). This supports the view that housing markets 

are unified product-differentiated markets. The figure also 

shows that there is no clear spatial pattern to the strongly 

negative or strongly positive 



residuals. No one neighbourhood has consistently negative or 

positive residuals, although there are sub-neighbourhood 

clusters of negative or positive residuals. This ocular review 

indicates that there is no simple model for defining 

submarkets. 

I estimate the mixture model for an urban housing market 

containing from 1 to 5 submarkets. I present the log 

likelihood trace for this set of estimation experiments in the 

first column of the left-hand panel of Table 2. The likelihood 

ratio test statistic -2 In x for the tests of the 

null hypothesis of m versus m+l housing submarkets are 

presented in the second column of the panel.I can reject the 

null hypotheses of 1 submarket versus 2 submarkets, the null 

hyppthesis of 2 submarkets versus 3 submarkets and the null 

hypothesis of 3 submarkets versus 4 submarkets using either a 

conventional chi-squared distribution for the test statistic 

or Wolfe's adjusted chi-squared distribution with twice the 

number of degrees of freedom (Wolfe's c~1). My attempts to 

estimate a 5 submarket model failed. Although the EM 

algorithm does produce estimates for the 5 submarket model, 

different estimates are obtained from different starting 

values and covariance matrix of the parameters for these 

estimates is not positive definite. A deeper investigation of 

the fifth market segment reveals that it has too few 

observations to permit a reliable estimate of the hedonic 

model for that submarket. A model with a reduced set of 

explanatory variables might be estimated, but I have not taken 



that step here. 
Table 3 contains the estimated coefficient for the 4 submarket 

model. The means for the variables for the observations in 

each submarket are given in Table 4, to assist in the 

interpretation of these estimates. To calculate the means, the 

observations are assigned to the 

submarket with to the largest posterior probability; that is, 

mi = arg maxm {ιim } 

 
Table 2 
 
 
Log Likelihood Trace For Mixture Models 
 
 
 
 

Oure Mixture Spatially contextual mix Submarket 
LogLiklihood -2lnλ LogLiklihood -2lnλ 

1 -1930.98 -- -1930.98 -- 
2 4428.91 12719.79 4437.98 12737.93 
3 4553.29 248.785 4532.97 189.97 
4 4792.81 479.05 4591.49 117.05 
5 nc nc 4637.61 92.24 
 
   
nc = Model failed to converge.  
Critical value for chi-squared with 10 degrees of freedom is 18.3.  
Critical value for Wolfe's chi-squared with 20 degrees of freedom is 
31.4. 

(df=lO) 

 
The most significant feature of the estimates is that prior 

probabilities of submarket membership, x, allocate the 

majority of the observations to one or two submarkets. 

Sixty-six percent of the observations are in the first 

submarket and twenty-three percent of the observations are in 

the second submarket. The corresponding posterior 



probabilities are 72.1% and 14.9%. While the hypothesis of a 

single housing market is rejected, quite resoundingly, the 

fact that 89% of the observations lie in one or two submarkets 

supports the view that relatively few product-differentiated 

markets are needed to describe pricing in urban housing 

markets. 

 

The parameter estimates for the hedonic equations vary quite 

widely across the submarkets. This is expected. If they did 

not differ significantly, the model would not discern 

different pricing relationships. 

The coefficients for submarket 1 point to a market with two 

dominant pricing factors: the vintage of construction and the 

value of chattels. The elasticity of the vintage variable, 

BUILT, is -0.232. The fact that the coefficient is negative 

means that in the Auckland market the vintage of the housing 

unit and/or its proximity to the CBD outweigh the pure 

depreciation effect of unit ageing. However, despite the 

magnitude of the elasticity, the actual effect in the market 

is tiny. At the margin, a new 1995 vintage house will be only 

0.5% cheaper than the average 1946 vintage house. The other 

noted pricing factor, CHATTELS, does have a demonstrable 

effect on price. The elasticity of price with respect to 

CHATTELS is 0.946, which translates to a 6.5% increase in 

property value per $1,000 of chattels (evaluated at the mean 

for submarket 1). Thus, the general quality of the interior 



space of the dwelling is the overriding factor explaining the 

prices of the housing units in this submarket. Although the 

other pricing attributes are statistically significant (except 

for POOR and T), the estimated elasticities are small and the 

quantitative impacts negligible. As expected, house prices 

increase with floor area and decrease when quality declines, 

but, unexpectedly, house prices decrease with the lot size 

variables LAND and LAND0. The negative sign on the LAND 

coefficient implies that, at the margin, the average lot in 

this submarket is too big. The negative sign on the LAND0 

reflects the negative coefficient on LAND. An average property 

would have a LAND0 coefficient of about -0.53. The estimated 

coefficient for LAND0 is -0.55, which is not significantly 

different from -0.53. 

=== Tables 3 & 4 ==== 

The housing units in submarket 2 (see Table 4) are cheaper- 

$258,125 versus $308,602, with less value in chattels - 

$13,026 versus $14,119, but on larger lots _ 793m2 versus 

762m2. Also, the number of properties with no recorded lot 

size increases from 30% to 44%. The estimated price 

elasticities show that, like submarket 1, the value of 

chattels is the most important attribute in housing unit 

pricing. The elasticity of CHATTELS is 1.083. This factor 

alone accounts for $21,562 of the $50,477 difference in the 

mean prices of the units in the two submarkets. The pricing of 

units in submarket 2 differs from the units in submarket 1 in 



three respects. First, in submarket 2, there is a greater 

reliance on lot size as a determining factor. This is manifest 

primarily through an increase in the LAND coefficient. A 100 

m2 increase in lot size increases the price of the property by 

4.2%. Second, housing unit quality is more important in 

submarket 2. Average units are 5.6% less expensive than good 

units, as compared to 1.1% less expensive in submarket 1. The 

coefficient for the variable POOR is statistically 

insignificant in both submarkets. Third, the vintage of the 

housing unit has a smaller positive effect on price in 

submarket 2 and it is statistically insignificant. Submarkets 

3 and 4 are minor markets, constituting 6.2% and 4.8% of the 

Auckland City housing units, respectively. Both are higher 

priced markets with average sale prices of 

$379,170 and $320,625 relative to the $308,602 and $258,125 

for submarkets 1 and 2. The higher prices are supported by 

dwelling units that have more floor area, that are located on 

larger lots and that are of higher quality, but the value of 

chattels is lower and this partially offsets the impact of the 

favourable attributes.The offset from lower chattel values is 

smaller than it would be in the first two submarkets, because 

the housing prices in submarkets 3 and 4 do not depend as 

heavily on this pricing factor. The elasticity for CHATTELS is 

0.029 for submarket 3 and 0.177 for submarket 4.. 

Submarket 3 is sensitive to the vintage of construction. The 



prices of housing units in this submarket decrease by 4.3% per 

decade. The effect of BUILT is statistically insignificant in 

submarket 4. In both submarkets 3 and 4, the prices of the 

units increase markedly with floor area. The elasticities of 

FLR are 0.813 and 0.507, respectively. These coefficients 

imply that an increase of lOm2 (approximately 108 square feet) 

increases the house prices in these submarkets by 5.28% and 

3.23%, respectively. Lot size does not have a statistically 

significant effect on the prices in either submarket. Finally, 

the housing units in these submarkets respond very strongly to 

decreases in housing quality. An average quality unit in 

submarket 3 is 45.6% less expensive than a good unit and in 

submarket 4 an average unit is 36.3% less than a good unit. A 

further decrease in quality to poor from average reduces the 

price in submarket 3 by an extra 0.23% for a total decrease of 

47.9%. The corresponding decrease in price submarket 4 is 35% 

for a total decrease of 71.3%, but this marginal effect is not 

statistically significant. 



5.0 A Spatially Contextual Mixture Model 

 
One limitation of the mixture model presented in section 2 is 

that the mixing probabilities Z are constant. As a result, the 

ability to distinguish submarkets depends solely on the 

separation of the distributions of the regression disturbances 

eim. This approach does not use all of the market information 

available. In particular, it does not use the fact that 

household will sort themselves across space according to their 

housing preferences.5 A well-known example is the sorting of 

household by size and/or composition. Households with children 

demand more land relative to housing capital. Hence, they have 

flatter bid rent curves and, in a competitive housing market, 

this results in their locating further from employment nuclei 

(further from the CBD in monocentric cities), other factors 

being equal. Another well-known example is that of households 

sorting themselves, a' la Tiebout, by jurisdiction according 

to their personal net fiscal benefit of residing in a 

community. 

The gist of household sorting is that like households will 

congregate in neighbourhoods. It is the essential idea of 

congregation or neighbourhoods that must be captured in any 

empirical specification.6 In the rest of this section, I 

specify a reduced form model that captures the idea of 

spatially contextual submarkets and present the estimates from 

this model. The model is based on the hypothesis that housings 

unit which are spatially close to each other are more likely 



to be in the same submarket than housing units that are 

spatially distant from each other. This hypothesis already has 

some empirical support in terms of the subneighbourhood 

clusters of negative and positive residuals observed in Figure 

1. A formal test is needed however. 

To define the contextual model, I need to develop some 

notation. Let zi=(0,...,0,1,0,...,0) be an M dimensional 

submarket indicator vector for the ith housing unit, where 

zim=l if housing unit i is in submarket m and is zero 

otherwise. Also, let z=(zl,...,zl) be the collection of the 

indicator variables for all the housing units in the urban 

housing market. The problem of determining a spatially 

contextual estimate of submarket membership is one of 

specifying the distribution for the pr{z = z I p, x}. This 

distribution is the joint distribution of submarket 

assignments across all housing units conditional on the 

pricing information in the market. 

To estimate z, the probabilities of submarket membership must 

be estimated simultaneously for all housing units. This is a 

daunting computational task even for small markets. 

Fortunately, methodologies for doing this have been explored 

in the literature on statistical image analysis. In that 

literature, the problem is to assign colours to the pixels in 

an image contaminated with noise. This problem occurs in the 

remotely sensed images from satellites, medical imaging (e.g., 

magnetic resonance or photon tomography) and astronomy, to 



name a few examples. 

Models based on locally dependent Markov random fields play a 

central role in statistical image analysis and correspond 

closely to the problem of assigning housing units to 

submarkets . When the probability distribution P(z)= prt z = z 

I p, x } follows a Markov random field, each housing unit can 

be assigned to a submarket, according to the conditional 

probability 

Pi (Zi I Z(i) ) = Pr{Zi = Zi I Z(i, }  …..(7) 
where Z(i) is the collection of submarket allocations z with 

zi deleted. The additional assumption of local dependence 

means that the distribution (7) relys only on the housing 

units in the neighbourhood of housing unit i. Let Ni be a 

subset of { 1,...,I} containing the indexes of the neighbours 

of housing unit i. Then, the conditional probability (7) 

becomes 

Pi (Zi | ZNj ) Pr{Zi Zi | ZNj } (8) 

To use this approach, a functional form and neighbourhood 

structure must be specified a priori. Besag (1986) and others 

suggest the simple, frequency based, functional form 

prt Zim = 1 1 ZN, } = Zm exp(]/u im )/~jMI 1tj exp(^yu jj ) m 

= 1,. . ., M; i = 1,.. ., I (9) 

where uim denotes the number of neighbours on housing unit i 

belonging to submarket m. 



The coefficient Y measures the strength of the submarket 

relationship among the housing units in the neighbourhoods, 

Ns. When >0, there is no relationship between the submarket 

assignments and the model reduces to the pure mixture model. 

As y increases the correlation between the submarket 

assignments increases. 

Defining the neighbourhood of a housing unit is a more 

difficult task than it appears at first. Most choices for a 

neighbourhood do not yield a closed form solution of (9). The 

difficulty lies in the fact the neighbourhoods of dwelling 

units overlap and, therefore, one still must solve (9) 

simultaneously for all housing units. The exception to this 

are Markov mesh models (Abend, et al., 1965), which impose a 

pre-specified order of precedence on the evaluation of the 

probabilities. In the empirical work below, I use a Markov 

mesh model in which the neighbourhood of housing unit i 

contains all housing units within a one-third kilometre radius 

of unit i and lying to the south-west of this unit. Clearly, 

this is a restrictive assumption but it is needed to simplify 

the computation. 

The spatially contextual mixture model is obtained by 

substituting the probabilities (9) for the fixed mixing 

proportions in equations (3), (5) and (6). The parameter 

estimates are solution to (4). A version of the EM algorithm 

can be used to estimate the model. However, for convenience, I 

estimate the model using a combination of the BHHH algorithm 



and the Newton-Raphson algorithm. I present my results for 

this model in table 2, 5 and 6. 

The log likelihood trace for the spatially contextual model is 

recorded in the right hand panel of Table 2. The log 

likelihood ratio tests support a model containing five housing 

submarkets. An attempt to fit a model with six housing 

submarkets failed. The model allocated too few observations to 

the sixth market to enable the estimation of the parameters of 

the hedonic equation for this market. 

There is one anomalous result in Table 2. The log likelihood 

for the contextual mixture model is less than the log 

likelihood for the pure mixture model for each submarket 

dimension, except m=2. Normally, adding an extra parameter 

increases the log likelihood value. The decrease in the log 

likelihood is due to either the neighbourhood definition or 

the Markov Mesh assumption. In the future, additional 

specifications should be examined. The estimated coefficients 

for the model are given in Table 5 and the means of the 

variables for the five submarkets are presented in Table 6. 

The first coefficient of interest in the model is r, since it 

defines the strength of neighbourhood relationships. My 

estimate is y=0.065. 

The estimate is statistically significant, but numerically 

small. However, despite its size, it has a large effect on the 

estimates of the other coefficients in the model. By 

introducing a spatial context, housing units are bound 



together into neighbourhoods and neighbourhoods are bound 

together into an extensive urban housing market. This is 

manifest in the model by the high proportion of housing units 

allocated to the dominant housing market_submarket 1. The 

prior probability that a house will be assigned to submarket 1 

is 83.5% and the posterior probability is 89.5%. The 

corresponding values for the pure mixture model where 

65.7% and 72.1%. 
 

=== Tables 5 & 6 = 

 

The estimates of regression parameters for submarket 1 are 

qualitatively similar to the estimates for submarket 1 in the 

pure mixture model. Once again, CHATTELS is the most important 

price determinant in the dominant submarket, with an 

elasticity of 0.972. The variable BUILT, which was important 

in the pure mixture model, is smaller in magnitude and 

statistically significant in the contextual model. In fact, 

BUILT is only statistically significant in two submarkets: 

submarkets 2 and 5. This suggests that adjusting for 

neighbourhood context reduces the effects of architectural 

vintage and distance from the CBD. The floor area variable, 

FLR, has a small positive and statistically significant 

coefficient, as it does in the pure mixture model. The lot 

area variables LAND0 and LAND have small negative 

coefficients. However, the estimates are statistically 

insignificant. The insignificance of the lot area variables is 



a general result. The coefficients are insignificant for all 

submarkets, except submarket 5. In the pure mixture model, 

LAND0 and LAND are statistically significant for the two 

dominant markets. The elasticities of the quality variables 

AVER and POOR are larger in magnitude and statistical 

significance for all of the submarkets than in the pure 

mixture model. In submarket 1, an average units is 1.2% 

cheaper than a good unit, while a POOR unit is 1.9% cheaper 

than a good unit. The quality effects are more pronounced in 

the other markets. 
Submarket 2 corresponds roughly with submarket 3 the in the 

pure mixture model. In both models, it is consists of big 

expensive houses. There are two main differences between the 

models. First, the elasticity of FLR is smaller in the 

contextual model than in the mixture model (0.737 versus 

0.813). Second, the quality variables are also slightly 

smaller in magnitude than contextual model than in the mixture 

model (-0.407 versus -0.456 for AVER and -0.446 versus -0.479 

for POOR). The pricing effects of the decreases in the 

elasticities is muted by the increase in the average floor 

area and increase in general quality of the houses in 

submarket 2 of the contextual model as compared to submarket 3 

of the pure mixture model. 

Submarkets 3, 4 and 5 have no clear analogues in the pure 

mixture model. All three markets contain expensive houses, 

with average sales prices of $384,106, $315,467 and $530,913, 



respectively. Moreover, all three submarkets display 

remarkable estimated rates of price appreciation. Over the 

time period starting in 1995:Q3 and ending in 1996:Q3, these 

housing units appreciated by 42.6%, 47.7% and 57.5%. These 

rates of appreciation are statistically significant for 

submarkets 3 and 5, but not for submarket 4. 

Submarkets 3 and 4 are similar in terms of their housing 

attributes and in terms of their estimated elasticities. 

Submarket 5 is quite distinct. The houses in submarkets 3 and 

4 are about the same average age, built in 1946 and 1945; they 

are large on average, 176 m2 and 171 m2and they are located on 

large lots, 877 m2 and 855 m2 on average. They differ in the 

average value of their chattels, $12,988 and $9,362, and the 

average quality of the units, The coefficients on the BUILT 

variable are large but statistically insignificant in both 

markets. The LAND0 and LAND variables are also statistically 

insignificant in both markets. Although, I note that estimated 

coefficients for the lot size variable are strongly negative 

for submarket 3. The prices of the dwellings in these markets 

respond strongly, and with statistical significance, to the 

floor area of the houses. For submarket 3, the elasticity of 

FLR is 0.906, while, for submarket 4, the elasticity of FLR is 

1.431. The elasticities of CHATTELS for the submarkets are 

0.144 and 0.254, respectively, and both coefficients are 

statistically significant. These elasticities are smaller than 

those observed for the markets in the mixture model. The 



quality variables have major impact on the prices of housing 

units in submarkets 3 and 4, particularly the POOR variable. 

In submarket 3, housing units are marked down by 19.2% if they 

are average quality units and 66.3% if they are poor quality 

units. Both coefficients are statistically significant. In 

submarket 4, the percentage reductions in price are 6.3% and 

94.0% for average and poor quality units respectively. 

However, only the coefficient on POOR is statistically 

significant. It is hard to discern precisely what 

differentiates the pricing of housing units submarkets 3 from 

the pricing of units in submarket 4. But, in general, it 

appears that the prices of the units in submarket 4 are more 

attribute responsive than the prices of the units in submarket 

3. 

Submarket 5 is unique among the submarkets. It contains a 

small number of very expensive newer, smaller, houses built on 

large lots. In addition, the houses contain chattels of 

considerable value. The properties are priced quite 

differently from those in the other submarkets. The estimated 

elasticity on BUILT is large_10.271_.and, as noted above, 

this is the only submarket where BUILT is statistically 

significant. The estimated elasticity implies that the houses 

in this market rise by 5.2% for every decade newer. Despite 

the smaller sizes of these housing units, the elasticity of 

price with respect to floor area is small and statistically 

insignificant. On the other hand, despite large lot sizes, the 



prices of the houses are quite sensitive to lot size. The 

elasticity for lot size is 1.099, which implies a price 

increase of 9.6% per 100 m2. This strong lot size effect is 

reflected in the LAND0 coefficient. If the lots without a 

recorded land area were average in lot area, the LAND0 

coefficient would be approximately 7.6. The estimated 

coefficient is 7.38. The opposing results for FLR and LAND 

variables suggest that the properties in this submarket are 

prime for subdivision and redevelopment. The large positive 

and statistically significant coefficient on the quality 

variable POOR (0.955) is further evidence supporting this 

conjecture. It is easier to obtain a the necessary planning 

approvals when the property is run down. The positive 

elasticities on BUILT and CHATTELS and the negative elasticity 

on AVER might be considered counter evidence. These 

coefficients indicate that housing unit attributes have a 

considerable role in determining price. However, this argument 

does not have much force in Auckland, because of the ease and 

prevalence of in-fill redevelopment, wherein the existing 

structure is retained and the "surplus" land is subdivided and 

built upon. 

 

 

6.0 Summary and Conclusion 

 

 
This paper demonstrates that it is possible to divide an urban 



housing market into a set of component submarkets in a way 

that is consistent with existence of one or more equilibrium 

hedonic pricing relationships. The test for the number of 

component submarkets easily reject the null hypothesis of a 

single unified housing market, given the hedonic models 

specified in the paper. The exact number of submarkets is less 

clear. The models run into thin submarket problems before the 

log likelihood ratio tests can reject the null hypothesis of 

an additional submarket. Despite the results confirming 

multiple submarkets, my overall conclusion that the prices for 

the vast majority of houses are described well by one or two 

equilibrium pricing relationships. The remaining submarkets 

are niche markets of some sort. Unfortunately, the houses that 

fall into these niche markets are not identified in advance. 

 

My results suggest that identifying the houses that fall into 

in the smaller submarkets is not the appropriate objective. 

Instead, if the objective is to fit the equilibrium hedonic 

relationship for the dominant submarket, this can be 

accomplished by an aggressive program of data trimming. If the 

houses in the smaller submarkets are removed, the hedonic 

price function for the dominant submarket can be consistently 

estimated by ordinary least squares. For Auckland City, 

trimming by price, floor area and lot area would yield the 

requisite sample. 



Table 3 
 
Parameter Estimates by Submarket for Mixture Model 
 
 

                           Submarket 
1 2 3 4 

Variable 

Coeff(t) t statisti Coeff(t) t statisti Coeff(t) t statisti Coeff(t) t statisti 
P 0.657 33.746 0.233 10.521 0.062 7.971 0.048 6.034 
Constant 5.297 11.301 1.990 1.035 72.285 4.674 -16.763 -0.368 
BUILT -0.232 -3.982 0.014 0.053 -8.384 -4.145 3.183 0.521 
FLR 0.020 5.131 0.006 0.737 0.813 7.840 0.507 2.425 
LANDO -0.055 -2.364 0.216 2.105 -0.080 -0.134 1.292 0.828 
LAND -0.008 -2.383 0.035 2.227 -0.003 -0.035 0.222 0.951 
CHATTELS 0.946 230.308 1.083 81.548 0.029 3.508 0.177 10.083 
AVER -0.007 -2.296 -0.039 -3.445 -0.456 -4.998 -0.363 -2.019 
POOR -0.011 -1.872 -0.056 -4.113 -0.479 -3.225 -0.713 -1.786 
T -0.005 -1.037 0.024 1.579 0.187 1.542 0.440 1.585 
S 0.043 41.663 0.057 26.668 0.252 5.551 0.752 11.069 
   



Table 4 
Variable Means by Submarket for Mixture Model 
 
 
 

Submarket Variable 
1 2   3 4

Price    308601.85 258124.52 379170.11 320625.43
BUILT     1945.49 1947.64 1943.85 1947.97
FLR     132.84 133.32 148.98 151.84
LANDO     0.30 0.44 0.27 0.19
LAND     762.30 793.13 837.87 865.68
CHATTELS     14,118.65 13025.57 12065.74 9137.29
GOOD     0.13 0.17 0.22 0.25
AVER     0.82 0.74 0.73 0.66
POOR     0.05 0.09 0.06 0.10
T     0.36 0.32 0.36 0.39
N     3396 704 400 212
%N     72.1% 14.9% 8.5% 4.5%
 
 

 
Table 5 
 
Parameter Estimates by Submarket for Spatially Contextual Mixture Model 
 
 
                                 γ = 0.065(3.439) 

                           Submarket 
1  2 3   4

Variable 

Coeff(t) t statisti Coeff(t) t statisti Coeff(t) t statisti Coeff(t) t statisti 
π   0.835 75.838 0.072 8.276 0.064 60.314 0.017 1.864 
Constant 3.662 5.595 60.006 4.964 37.843 2.369 39.943 0.521 
BUILT -0.046        -0.541 -7.313 -4.307 -4.085 -1.942 -4.362 -0.417
FLR 0.015        3.057 0.737 7.241 0.906 10.466 1.431 6.212
LANDO         -0.042 -1.872 0.425 0.774 -0.072 -0.077 -3.790 -0.991
LAND         -0.006 -1.815 0.077 0.917 0.021 0.153 -0.584 -1.007
CHATTELS 0.972 226.692      0.028 4.522 0.144 10.441 0.254 10.570
AVER -0.012        -3.551 -0.407 -5.196 -0.192 -2.559 -0.063 -0.237
POOR         -0.019 -3.821 -0.446 -3.373 -0.663 -2.973 -0.940 -2.929
T 0.006 1.496    0.105 1.088 0.426 2.452 0.477 1.234
σ     0.051 60.922 0.255 10.624 0.300 6.706 0.644 4.589
   





Table 6 
 
Variable Means by Submarket for Spatial Contextual Mixture Model 
 
 

Submarket  Variable 
1 2   3 4 5

Price      292285.03 476500.00 384105.61 315466.53 530912.53
BUILT      1945.73 1945.45 1945.90 1945.00 1955.45
FLR      131.01 176.33 170.99 160.56 130.30
LANDO      0.32 0.24 0.19 0.17 0.30
LAND      763.22 891.82 876.52 855.17 1015.65
CHATTELS     13574.90.65 13508.69 12988.05 9361.66 19000.30
GOOD     0.13 0.38 0.26 0.39 0.30
AVER      0.81 0.59 0.70 0.56 0.64
POOR      0.06 0.03 0.04 0.06 0.06
T      0.35 0.41 0.40 0.45 0.34
N      4281.00 264.00 161.00 36.00 33.00
%N      89.5% 5.6% 3.4% 0.8% 0.7%
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Footnotes 
l A finite mixture model iS also an option when prior sample 
separation information is available. However, a switching 
regression model can not be used when there is no information 
on which to base the choice equations. Maddala (1983) offers a 
good discussion of the differences between switching 
regression and mixture models. 
2 The parameter 1EM can be determined from the constraints (2) 
as I_~,mM=1 11m . 
3 Each observation, gives rise to a potential singularity on 
the edge of parameter space. 4 The mean and standard deviation 
of the LAND are calculated using the properties which have 
recorded lot sizes. 5 I am not suggesting that the sorting 
process be modelled. Modelling the sorting process would be 
inconsistent with the reduced form nature of the basic hedonic 
model. A theoretically solid sorting model would require the 
specification of household preferences, not present in the 
hedonic model. However, a sorting model would be a nice 
addition to a simultaneous equations model of the demand for 
housing. 6 Simply adding household characteristics to the 
specification of the mixing probabilities does not accomplish 
this because it does not introduce a spatial context. 
 


