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ABSTRACT
If there is long-term memory in property stocks and REITs prices, 
historical data is relevant for future prices prediction. Despite previous 
research adopted various different methods to forecast future asset 
prices by using historical data; we attempted to forecast the REITs 
and stock indices by Group Method of Data Handling (GMDH) neural 
network method with Hurst which is the first of its kind. Our results 
showed that GMDH neural network performed better than the 
classical forecasting algorithms such as Single Exponential Smooth, 
Double Exponential Smooth, ARIMA and back-propagation neural 
network. The research results also provide useful information for 
investors when they make investment decisions.

1. Introduction

LeRoy and Porter (1981)’s variance-bounds test results supported the existence of random 
walk and we cannot forecast stock prices accurately. Kendall (1953) suggested that there 
was no regularity or periodicity in stock prices movements. Fama (1965) indicated that 
changes in stock price are random and confirmed random walk hypothesis. Stock prices 
prediction based on historical information was impossible. The Efficient Market Hypothesis 
(EMH) proposed that if prices reflect all the information in stock market, we cannot use 
information to increase profit in such an efficient market. Nevertheless, Mandelbrot spec-
ulated that capital market price changes were fat-tailed with spikes (LeRoy & Porter, 1981).

Many of the previous research suggested that securitized and direct real estate markets 
are correlated. For example, Assaf (2006) confirmed that there were long-term co-memo-
ries between stocks and securitized property markets in Canada, overthrew EMH theory. 
Another school of thought, however, illustrate the REITs are unique with some special 
characteristics such as tax transparency (Newell & Osmadi, 2009; Newell & Peng, 2012). 
Kuhle (1987)’s research, however, found that risk reduction in common stock was greater 
than REITs and REITs are more efficient. Besides, Wang, Erickson, and Chen (1995) as 
compared to the general securities exchange, REITs have less turnovers. All these lead us 
to study whether the most accurate forecasting methods for REITs and stocks are different 
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as they have different characteristics according to Kuhle (1987) and Wang et al. or they 
have similar forecasting results due to long-term co-memories between them based on 
Assaf (2006)’s study.

Previous research used different methods to forecast stocks and REITs prices. For exam-
ple, Li and Chau (2016) used state space model to forecast property stock prices. Pavlova, 
Cho, Parhizgari, and Hardin (2014)’s research results showed that the appearance of long 
memory in REIT return was due to a lack of adjustment for temporal changes in the uncon-
ditional mean of volatility and modified FIGARCH model performed better at daily and 
weekly forecast horizons.

In this research paper, our objectives are to test the following hypotheses:
H1: Random walk theory is disproved, i.e. we can forecast stock and REITs prices.

H2: Long-term memory exists in stock and REITs prices according to R/S analysis.

H3: GMDH neural network results in better forecasting results than Single Exponential Smooth 
(SES), Double Exponential Smooth (DES), ARIMA and back-propagation neural network 
(BPNN).

H4: Long-term memory as reflected by Hurst can affect the forecasting ability of GMDH.

H5: There are differences in forecast performance in stocks and REITs indices.

The paper has academic and practical values. It is the first paper which adopts GMDH neural 
network with Hurst to perform forecasting. It also compares and contrasts the forecasting 
performance of GMDH neural network with Hursts on stocks and REITs prices with the 
traditional method such as BPNN, moving average, SES, DES, ARIMA. The results also 
show that even if long-term memory is weak, with close to random walk characteristics 
in Italy stock indices, GMDH neural network still outperforms the other traditional fore-
casting methods.

2. Financial forecasting methodology

Stock prices can be analyzed by technical and fundamental analysis (Huang & Chiu, 2005). 
Fundamental analysis includes international and political events, aggregate economics 
environment, industry conditions, and individual enterprises. International and political 
events include war, natural and man-made disaster, international sanction, international 
conference or negotiations, large scale financial institutions bankruptcy, government policy 
and intervention, vote, mass strike, and so on. Economics environment can be affected 
by incomes, interest rates, exchange rates, commodities prices, oil prices, and tax rates 
etc. Industry conditions can be affected by types of productions and life-cycle of indus-
try. Individual enterprises can be affected by enterprises’ financial statements and their 
individual events (Huang & Chiu, 2005). On the other hand, previous research shows that 
long-memory models consistently outperform their short-memory counterparts over a 
variety of forecast horizons (Zhou & Kang, 2011).

Previous researchers use different research approach to forecast REITs returns, for exam-
ple, moving average models, SES, DES, autoregressive moving average (ARMA) model, 
autoregressive integrated moving average (ARIMA) model etc. Pierdzioch and Hartmann 
(2013) used the think and thin modeling to forecast the real estate returns. Their research 
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found that excess returns are predictable out-of-sample by using the financial and macroe-
conomic data in real time. Ling, Naranjo, and Ryngaert (2000) found that excess returns are 
less predictable in the case of out-of-sample than in-sample. Besides, active-trading tactics 
according to out-of-sample prediction under zero transaction cost assumption perform 
better than REIT buy-and-hold strategies. Sah, Zhou, and Das (2015) used a sample of 108 
additions to the S&P REIT Index from 2000 to 2011, it was found that responses of the 
analysts to index announcement depended on the type of revision to dividend forecast. 
Announcement of positive revised estimates does not add any new information to the 
analysts. However, negative revised estimates add information to the estimates.

2.1. Traditional forecast method: moving average, single exponential smoothing 
method and ARIMA

In conventional moving average forecast, consider Ft as the forecast at some point within the 
time series and Yt is the observation (Cadenas, Jaramillo, & Rivera, 2010). In a bull market 
the effect of the lag of the moving average will fall below the rising price line, whereas in 
the bear market it will be above. When the price changes direction, from falling to rising 
or vice versa, moving average and price lines will cross as the moving average reflects the 
preceding trend by nature of the lag (Ellis & Parbery, 2005).

Single exponential smoothing method is used to forecast the previous periods and 
adjusted the results by using the forecast error. The new forecast value is the old forecast 
with an adjustment for the error which obtained in the last forecast (Cadenas et al., 2010). 
Double exponential smoothing method applies SES twice, once to the original data and 
then smoothed data. Holt’s (2004) method for double exponential smoothing used two 
different smoothing parameters:

The level estimate: Lt = αYt + (1−α)(Lt−1 + Tt−1)
The trend estimate: Tt = β(Lt−Lt−1) + (1−β)Tt−1
The p-step ahead forecast at the time origin: Ŷ t+p = Lt + Tt p
Initial values: (1) Lt = Y1, T1 = 0; (2) where L1 = average of the first several original values, 

T1 = estimated slope.
Wu, Liu, and Yang (2016)’s results show that Grey double exponential smoothing method 

performs better than double exponential smoothing method in forecasting. Burger, Dohnal, 
Kathrada, and Law (2001)’s tourism demand forecasting shows that single exponential 
smoothing’s forecasting performance was worse than neural network method. Gardner, 
Anderson-Fletcher, and Wicks (2001) recorded previous research that exponential smooth-
ing achieved more accurate forecasting results than Focus Forecasting.

2.2. ARIMA method

Autoregressive integrated moving average (ARIMA) forecasting method includes the fol-
lowing steps: (1) model identification and selection; (2) estimation of autoregressive (AR), 
integration or differencing (I), and moving average (MA) parameters; (3) model checking. 
ARIMA can be extended to non-stationary series by differencing the time series. Current 
data values correlate with past values in the same series to produce the AR component p. 
Current values of random errors were assumed to be correlated with the values in the past 
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to produce the MA component, q. Current and past data’s mean and variance are assumed 
to remain unchanged and stationary. The I component, represented by d, corrects the sta-
tionary problem through differencing. P refers to the order of AR terms, d indicates the 
order of differences requires to reach the goal of stationary, q is the order of MA terms in 
a non-seasonal ARIMA (p, d, q) model. The p, d, and q parameters are integers equal to or 
greater than 0.

Though ARIMA is a very well-known traditional forecasting method, many of the recent 
research showed that it is not better than some of the recently developed forecasting meth-
ods. According to Crawford and Fratantoni (2003), ARIMA models generally perform 
better in out-of-sample housing prices forecasting as compared to regime switching model. 
Nevertheless, Makridakis and Hibon (2000) showed that forecasting hotel occupancy by 
ARIMA was worse than simple methods such as Gardner’s Dampen Trend Exponential 
Smoothing.

2.3. Neural network forecasting method

Neural network is a massive parallel complex nonlinear dynamic system. It has parallel pro-
cessing mechanism, high-speed computing capability, nonlinear operation which processes 
self-learning and organization ability. BPNN was created with one hidden layer between 
input and output units (Figure 1). All nodes of a layer were connected to all the nodes in 
the adjacent layers. The BPNN had two working phases, learning and recall phase. Known 
data-sets were used as a training signal in the input and output layers during the learning 
phase. The first operation in learning phase is feed-forward. During this stage, each of the 
input neuron receives an input signal and broadcasts it to the connected neurons in hidden 
layer. Each of the neuron in hidden layer computes activation and directs the result to the 
output neuron (Dosset et al., 2016).

In 1987, Lapedes and Farber first applied the neural network to forecast (Lapedes & 
Farber, 1987). White (1988) used the neural networks to forecast the IBM daily stock returns. 
The result was not satisfactory after training the network as it is trapped in local minimum. 
Kimoto and Kazuo (1990) proposed modular neural networks prediction system for the 
Tokyo Stock Exchange Prices Indices.

Xiao and Huang (2000) used the Group Method of Data Handling (GMDH) neural 
network to predict Chinese stamp market price and water level of a river. GMDH provided 
highly satisfactory forecasting result. Dase and Pawar (2010) indicated that neural network 
can successfully extract useful information from big data.

2.4. FMH with R/S in financial markets analysis

Based on fractal theory, Peters (1994) presented the new Fractal Market Hypothesis (FMH). 
The Rescaled Range (R/S) analysis pinpointed that the fractional Brownian motion accu-
rately portrays the volatility of financial markets. Zuang, Zhuang, and Tian (2003) applied 
R/S analysis of the Hurst exponent to study the volatile Shanghai Stock Exchange (SSE) 
Composite Index and Shenzhen Stock Exchange (SZSE) Component Index. The results 
showed that there was autocorrelation between stock price indices and these markets 
displayed fractal structure feature. Qian and Rasheed (2004) suggested that the BPNNs 
predicted Dow-Jones index more accurately in times of high Hurst Exponent. The Hurst 
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calculation showed that stock markets were not random in all periods. Some periods had 
stronger trend.

Huang (2011) adopted correlation analysis, Brock, Dechert and Scheinkman test and 
Rescaled Range to study the futures fund’s chaos effect. With regard to price forecast, there are 
back-propagation network and Adaptive network-based fuzzy inference system. By adding 
five input variables LIBOR, M2, R/J CRB index, Put/call ratio and MSCI global index in the 

Evaluate Neural Network Accuracy by using 
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Conclude the GMDH result and compare with 

classical forecasting algorithms by using MAPE
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Neural Network
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Figure 1. the procedure of training neural network.
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forecast model predict the price of futures fund. The results indicate that futures prices can 
be predicted. Furthermore, the back-propagation network has better price forecast result.

Zhao and Xu (2011) calculated the Hurst exponent based on the Shanghai Stock Exchange 
(SSE) Composite Index and found that the dynamic Hurst exponent is able to predict the 
long-term stock price’s trend. Faggini and Parziale (2012) indicated that nowadays the tra-
ditional economic theory is outdated. Many of the typical economic theory have become 
obsolete. As the mainstream economics are totally changing, the new elements are emerging 
constantly. One typical approach is to throw light on current phenomena with the chaotic 
theory. The author described different tools to test whether the economic and financial time 
series is chaotic. The chaotic behavior increases the difficulty in forecasting and introduces 
the new concept in today’s economics and finance.

Mitra (2012) calculated the Hurst exponent of twelve stock index series from financial 
markets around the world and found that when the data were split into smaller series, there 
was a strong relationship between Hurst exponent value and shorter series of 60 contiguous 
trading periods. A high value of Hurst exponent implied there was long memory in time 
series data. Besides, it showed that Hurst and return from a trading rule are correlated. 
Therefore, the Hurst exponent is important.

3. GMDH neural network

We developed and used the GMDH neural network to forecast REITs and stock indices. 
Daily data include Australia All Ordinaries Index (AORD), Hong Kong Hang Seng Index 
(HSI), Italy FTSE Italia All Share Index (ITLMS) and Turkey Borsa Istanbul 100 Index 
(XU100) from 1 September 2010 to 2 September 2013. Another REITs daily indices data 
came from Australia, Hong Kong, Italy, and Turkey from March 2010 to March 2014. Among 
these stock markets, Australia recorded the largest market capitalization with USD$1,286 
billion, followed by Hong Kong 1,108. Italy and Turkey was a small market with USD$480 
billion and USD$309 billion market capitalization only.

During this period, Australia REITs market was the largest. The S&P/ASX 300 Property 
Index included 24 A-REITs with office, retail and industrial sectors (17 REITs were excluded 
in this REITs index) (Australia Shareholders Associations, 2014). In Turkey, number of 
REITs in Turkey grows rapidly with 23 public REITs. Its market capitalization reached 
around USD$3.9 billion & assets of about USD$7.7 billion (Real Estate Easy Property Info, 
2016). On June 2012, 7 HK-REITs were listed in Hong Kong Stock Exchange with market 
capitalization of about US$15 billion (Real Estate Easy Property Info, 2016). Italy REITs is 
and was the smallest with 2 REITs in this period only (DataStream, 2016).

The step of GMDH neural network was illustrated in Figure 1:
Step 1. Gather stock and real estate indices data;
Step 2.  Calculate the general technical indicator (KD, MA, Bias, RSI, W%R, MTM, 

MACD);
Step 2a. Calculate the dynamic Hurst exponent;
Step 3.  Train the data by (1) general technical indicator, and (2) both general technical 

indicator and dynamic Hurst exponent;
Step 4. Compare and analyze the forecast results;
Step 5. Evaluate the neural network by using RMSE;
Step 6.  Summarize and compare the results with classical forecasting algorithms with 

MAPE.
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3.1. Neural network

As the feed-forward neural networks structure is fixed, its forecasting performance depends 
on the predetermined structure. BPNN is a widely used neural network to forecast financial 
data (Kimoto & Kazuo, 1990; Yao, Tan, & Poh, 1999). Typical BPNN usually has one input 
layer, some hidden layers (at least one) and an output layer. Figure 2 shows a one-hidden 
layer BPNN.

Each layer contains one or more neurons with mesh connection between layers. Neurons 
are connected from input to output layer in a feed-forward manner. Weights of the con-
nections are given. To reduce the error between target output and actual value, it is back- 
propagated via the network with weights updated. The supervised learning procedure 
minimizes the error between target output and actual value to raise the forecasting accuracy. 
Sigmoid activation function was used to calculate the outputs of neurons in the hidden layer. 
BPNN training is then carried by the following steps: (1) initialize the random weights;  
(2) use the current weight to calculate the output for activation; (3) calculate the error 
between target output and actual output; (4) adjust the weights to decrease error; (5) repeat 
step (2)–(5) until the error criterion is satisfied.

The Group Method of Data Handling (GMDH) improves forecasting performance of 
feed-forward neural network (Pan & Gu, 2007) by simulating nonlinear model. Non-linear 
heuristic self-organization method is valid for identification of high-order non-linear sys-
tem (Ivakhnenko, 1970). It is also known as polynomial network model. The network 
changes continually in the training process. In short, GMDH algorithm displays the fol-
lowing characteristics:

(1)    Self-organizing control in the modeling process without initial assumptions;
(2)    Optimal complexity model and high precision in forecasting;

Input signals 

Error signals 

X1

X2

X3

Xn 

……
     

Input 
Layer 

Hidden 
Layer 

Output 
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Figure 2. structure of BPnn with one hidden layer.
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(3)    It is capable of self-organizing the best structure of each layer in multilayer neu-
ral network and it is able to keep the useful variables and remove the redundant 
variables automatically;

(4)    It selects the best number of network layers and optimizes the number of neurons 
in each layer.

The forecasting performance is enhanced by discarding bad neurons through training. 
We use the GDMH shell software1 to develop the neural network model with two learn-
ing algorithms: (1) GMDH-type neural networks and (2) Combinatorial GMDH (Fong, 
Nannan, Wong, & Yang, 2012).

3.2. GMDH-type neural network

GMDH-type neural network is multilayer iterative neural network with the variation of the 
traditional Multilayer Iterative GMDH algorithm (MIA). It is implemented by a feed-for-
ward neural with multi-layered bi-input neurons. The GMDH algorithm generates a series of 
neuron by cross combination of each input unit where each neuron has optimal determinis-
tic transfer function. We then select the number of neurons. Selected neurons are combined 
and generate new neurons. By repeating this genetic, survival competition and evolutionary 
process, the process continues until a new generation of neuron does not perform better 
than the previous ones, the optimal model is selected. The structure is shown in Figure 3.

Similar to other neural network, the GMDH algorithm is:

(1)    A combination of the black box concept which study the relationship between 
input and output variables;

(2)    The neural approach utilizes the threshold logic and network connectionism.

The GMDH neural network constantly generates neurons, filtered by the external rules, 
combines the good neurons after filtration and generates the next layer neurons, until the 
best model is selected. Multiplicative-additive algorithms expand the functional space of 
GMDH algorithms but face the problem of unstable coefficients due to least square method. 
Least square method is applied to the logarithms of their values after taking the powers. 

X1

X2

X3

X4

Correspond to selected node

Figure 3. structure of GmDh network.
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Consider a non-linear system, x1, x2, …, xn is the input variables, y is the output variable. 
Their relationship will be:

 

The function f connects inputs and output variables. It can be expressed by discrete form 
of the Kolmogorov-Gabor function series:

 

The basic GMDH algorithm shown in Figure 4, xi is the initial input variable. G is the par-
tial polynomials with quadratic polynomial for each two input variables. yi

(k) is the output 
of the partial polynomials. The partial polynomials are obtained by fitting the measured 
data. xi

(k) is the mediator, filtered by each layer criteria from yi
(k), used as the input variable 

in next layer Figure 4.
Training a GMDH network includes an input layer to build the network and weights 

adjustments of neuron. The network layers increase until they meet the requirement of 
mapping accuracy. The number of the first layer neurons depends on the number of the 
input variables, each pair of input variables are linked with one neuron and the output:

 

The ai (i = 0, 1, 2, …, n) is the weight of the neurons, xi and xj refer to the pair of input. 
Therefore, ŷ is the weight of input variables in quadratic polynomials. In basic GMDH net-
work, two independent variables out of n input variables are used to construct the quadratic 
polynomial in Equation (3) that best fit the dependent observations (yi, i−1, 2, …, M). Each 
network layer doubles the orders in the polynomial; the output results will be high order 
(2p orders) polynomial, where p is the number of layer except the input layer.

(1)y = f (x1, x2,⋯ , xn)

(2)y = a0 +

n∑
i=1

aixi +

n∑
i=1

n∑
j=1

aijxixj +

n∑
i=1

n∑
j=1

n∑
k=1

aijkxixjxk +⋯

(3)ŷ = G(xi, xj) = a0 + a1xi + a2xj + a3xixj + a4x
2
i + a5x

2
j

Figure 4. GmDh algorithm Diagram.



132  R. Y. M. LI ET AL.

3.3. Combinatorial GMDH

Combinatorial GMDH is another algorithm in GDMH shell that increases polynomial 
function’s length and power. Data sample is divided into training and test subsample. The 
training subsample estimates the coefficients of the model, and the test subsample chooses 
the optimal model structure. In the first layer, information contains every column of the 
sample as follows:

 

m is the maximum number of x variables in x̄, and y′j is the jth predicted outcome by this 
simple linear regression. The least squares method solves the coefficients a0 and a1 for each 
of the m models by treating the model as a system of Gauss’s normal equation:

 

As yj’s value is known from the training samples, Equation (5) estimates two coefficient 
values by a combinatorial search. When all the possible polynomial models have been cal-
culated, the forecast values are checked against the real data. The model ζ with the lowest 
regularity criterion ρ(ζ) is retained. The regularity criterion that is used in fitness function 
is as follows:

 

ρ(ζ) is the average error in terms of the squared difference between the predicted and 
observed outcomes of model ζ. The model contains the variables from the initial layer that 
yield the lowest error. It is scaled up in the polynomial series and generated the new models 
in the subsequent layer. The polynomial in the second layer will be:

 

 

where i and k = 1, 2, …, m. The models in the second layers are checked for compliance 
with the regularity criterion. The best model is used to generate another model in the third 
layer. This is repeated in the upper layers until the regularity criterion no longer decrease 
in value. The output model is selected among the fittest models in each layer. The selection 
criterion is the forecasting variance criterion δ:
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where n is the number of samples in learning window. If the predicted outcome y′j pertaining 
to model ζ is applied on jth observation, mean value of the model outcome ỹ′j, is obtained. 
Feed-forward networks structure includes the number of layers and the neurons in each 
layer are fixed. Performance of the network is affected by the predefined network structure. 
During the training process, each layer of neuron network increases with the number of 
new neurons. Poor neurons are discarded.

3.4. Rescaled range analysis (R/S analysis)

R/S Analysis was used to calculate the Hurst exponent, to verify whether the system is a 
fractal approach. It was firstly used to study the changes in the flow of River Nile (Hurst, 
1951) and then used to study the existence of long-term memory. Rn is an accumulated value 
of the difference between data and its average in a time series. It is called n data’s difference. 
It represents the maximum of the changes in time series data. Sn is the standard deviation 
of the time series, and represents the degree of deviation from the average. It is a measure 
of the degree of dispersion. Rescaled range analysis Rn/Sn refers to the difference which is 
rescaled by Sn. In general, R/S Analysis’s assumption is simple, applicable in any time series 
analysis, can distinguish whether the time series is in random walk and determine whether 
the time series is persistent. Hurst Exponent is estimated by R/S analysis according to the 
log return of data (Wang, Song, & Wu, 2004). To eliminate autocorrelation, take log of Pi+1 
over time series Pi will generate new logarithmic series Li with length N = M−1 as follows:

Step 1. A time series Li with time N is cut into shorter time intervals n, i.e. A · n = N. The 
partial time series is N(k,a), k = 1, 2, 3, …, A, a = 1, 2, 3, …, n. The mean of each of the 
partial time series is:

Step 2. Calculate the cumulative deviate (Xk,a) from the mean of partial time series:

Step 3. Compute RI which is the difference between the maximum value (Xk,a) and the 
minimum value of (Xk,a). (Xk,a) is the sum of deviation from the mean.

Step 4. Calculate the standard deviation over the range 1 to A:

Li = Log

(
Pi+1

Pi

)
, i = 1, 2, 3,⋯ ,M − 1

ea =
1

A

A∑
k=1

Nk,a

Xk,a =

k∑
i=1

(Ni,a − ea) k = 1, 2, 3,⋯ , n

RIa
= max(Xk,a) −min(Xk,a) 1 ≤ k ≤ n

SIa =

�����
A∑
k=1

(Nk,a−ea
)2

A
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Step 5. RI divide by SI, and average all the partial time series of length n:

Step 6. Increase the length of A, repeat the Step 1 to 6, until A = (M−1)/2. According to 
Hurst, we establish the following relationship:

where c is constant.
The Hurst exponent is estimated by least square linear regression log (R/S) = log (c) + 

H · log(n) + ε, and the Hurst exponent (H) is the slope of the line. To test the H whether it 
is equal to .5, and determine its persistency, the t-test statistics will be:

where Ĥ is the estimate of H, S(Ĥ) is standard deviation of Ĥ (Wang et al., 2004). In log 
(R/S) = log (c) + H ⋅ log (n) + ε, the slope of log(R/S) to log(n) is estimated as the Hurst 
exponent. When value of n is very small, ranges between 0 and 1, value of A is very large. 
Hurst and Feller proved that: (R/S)n = (n*π/2)1/2, when H = .5, the correlation coefficient 
of time series is C(t) = 22H−1–1, and the fractional dimension is D = 2−H. the correlation 
coefficient function C(t) can test the independence of the time series, and the fractional 
dimension tests whether the time series is random (Fong et al., 2012). Depend on the value 
of the Hurst Exponent between 0 and 1, there are three types of time series:

(1)    When H = .5, C(t) = 0, D = 1.5, time series is random walk, correlation coefficient 
function is equal to zero, past increment is not associated with a future increment.

(2)    When .5 < H ≤ 1, 0 < C(t) ≤ 1, 1 ≤ D < 1.5, the time series has persistent behavior 
with long memory. Correlation coefficient falls between 0 and 1, meaning that 
the past increment has positive correlation with the future increment. If there 
is an increase from the last period of time, it may increase in the future. When 
there is a decrease from a last period of time, there will probably be a decrease in 
future. The time series is no longer a random walk, it is a biased random process.

(3)    When 0 ≤ H ≤ .5, −1 ≤ C(t) < 0, 1.5 < D ≤ 2, the time series has anti-persistence 
behavior. The correlation coefficient function falls between −1 and 0, i.e. past 
increment has negative correlation with future increment. If the Hurst value is 
greater than .5, fractal feature exists.

According to Wang et al. (2004), V statistics’ formula is:

(R∕S)n =
1

n

n∑
a=1

RIa

SIa

(R∕S)n = c × nH

H0:H = 0.5 H1:H ≠ 0.5

T =
Ĥ − 0.5

S(Ĥ)

Vn =
(R∕S)n√

n
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V Statistics was originally proposed by Hurst to check the stability of R/S analysis in 1951, 
but now is used to estimate the length of nonlinear long-term memory process.

To put (R/S)n = c × nH into Vn, then Vn can be: Vn =
(R∕S)n√

n
= c × nH−(1∕2). Based on the 

Hurst value, it will be mapped to different V statistics; there are three different types as 
follows:

(1)    If H = .5, the time series is the independent random process. V statistics will be 
equal to constant c and will appear as a horizontal line.

(2)    If H > .5 persistently, V statistics displays an upward trend.
(3)    If H < .5 persistently, V statistics shows a downward trend.

If mutation is found in V statistics analysis chart, graphically original from the upward 
trend will be turned to horizontal or downward trend. This turning point is the length of 
the aperiodic cycle; n period memory will be vanished at this point.

3.4.1. Dynamic Hurst exponent
If dynamic Hurst exponent exists in period t, t + n−1, we select the sub period (t, t + k−1), 
k ≤ n, and then use the R/S method to calculate the Hurst exponent in this sub period. t, 
t + k−1 is called the time window of period (t, t + n−1), i.e. the length of (t, t + n−1) time 
series dynamic Hurst exponent. By fixing k periods, a set of dynamic Hurst exponent is 
then calculated. Figure 5 shows the Dynamic Hurst Exponent experiment:

3.5. Data analysis

We use different countries or cities’ stock market and real estate market data in this research: 
(1) Australia All Ordinaries Index (AORD); (2) Hong Kong Hang Seng index (HSI); (3) 
Italy FTSE Italia All Share Index (ITLMS); (4) Turkey Borsa Istanbul 100 Index (XU100); 
(5) Australia REIT index data-set (Aus); (6) Hong Kong REIT index data-set (HK); (7) 
Italy REIT index data-set (Italy); (8) Turkey REIT index data-set (Turkey). All of the stock 
market data are obtained from the Yahoo finance2 and Google finance.3

Testing for stationarity is a necessary and qualifying condition for many of the time 
series forecasting models such as ARIMA. Presence of stationarity in time series is essential 
because it affects the behavior of a series where shocks will persist permanently in non-sta-
tionary series. Absence of stationarity may give rise to spurious regressions, implying that 
some statistically significant results may emerge, even when time series are not totally 
related. When this happens, the standard assumptions for asymptotic analysis (t-ratio) will 
no longer be valid. The forecast results will not so be credible.

A time series like those stock prices is supposed to be stationary if there is a constant 
mean and a constant variance without trend in the time series. It looks as if without obvious 
gradient, with constant variance, with no autocorrelation or periodic fluctuations over time. 
The basic formulation of stationarity is expressed by considering a simple AR(1) process:

 

where (c + tr) is a combination of constant and trend in its 1st order, p is a coefficient which 
can take a nth order power depending on how non-linear the time series is, and εt is the 
white noise. The formal approach to test stationarity of a time series is by the unit root test. 

(9)yt =
(
c + tr

)
+ pn ⋅ yt−1 + �t
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Depending on the p which is estimated from the stochastic process, two hypotheses are 
established.

H0: If |p| is greater than or equal to 1, then y is a non-stationary time series as its variance 
grows over time. i.e. against the alternative H1 when p ≥ 1.

H1: If |p| is less than 1, then y is a stationary time series.

Two tests are applied for verifying the stationarity of the time series data-sets that we 
used in this paper. They are Augmented Dickey–Fuller (ADF) (Cheung & Lai, 1995) and 
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) (Kwiatkowski, Phillips, Schmidt, & Shim, 
1992). These two popular tests complement each other with respect to setting H0 for 
non-stationary time series and stationary time series conversely.

3.5.1. Methods (how the test has been handled)
To test whether a given time series is stationary or not, an indirect test is applied checking 
for the existence of a unit root – the so-called augmented unit root test that generally ver-
ifies the hypothesis H0. Specifically two common tests for unit root are applied; they are 
Augmented Dickey–Fuller (ADF) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS). The 
ADF test incorporates a deterministic trend and squared trend, which are the combination 
of constant and trend (c + tr), and a squared trend p2. respectively. Thus, it embraces tests of 
trend-stationary process with a moderate to polynomial non-linear trend power to occur. 
Generally checking over these two types of time series covers most cases of somewhat linear 
and largely non-linear patterns of time series.

The Augmented Dickey–Fuller test is an extended version of the standard Dickey–Fuller 
test which is based on Equation (9), and it modifies so by subtracting yt−1 from both sides 
of the Equation (9):

Start

Calculate Hurst Exponent

Calculate V-Statistics

Determine aperiodic cycle 

Calculate Dynamic Hurst Exponent

Put the Dynamic Hurst Exponent into the GMDH network

Compare the result

End

Figure 5. Dynamic hurst exponent experiment flow chart.
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where p−1 = α, which is an indicator simplified to represent the null and alternative hypoth-
esis, respectively:

H0: stands true when α = 0 that the time series is non-stationary

H1: stands true when α < 0 that the time series is stationary

By the statistical properties of ADF, t-ratio is used to assess these hypotheses:
 

where σ is the standard error in the estimation process of α, and the estimated α is �̃�. It is 
known that the t-ratio will no longer follow the conventional t-distribution when there exists 
a unit root. This statistical property is used by DF test; however it is limited to checking 
only a single lag in the time series. To generalize this checking capability, ADF is extended 
to an autoregressive model AR(p), which is capable in testing time series with higher order 
lag. Therefore Equation (10) is extended to (12) as follow:
 

In this way, this ADF formulation can be efficiently used to test the hypotheses H0 and H1 
that involve only testing a variable α (equal to or less than 0), by computing the t-ratio of 
α, as in Equation (11).

ADF by far is effective, except for one shortcoming in determination of the lag order 
which is a manual step. The choice of the lag length in terms of number of lagged difference 
terms is influencing the efficacy of the stationarity test. We took the default lag length at 
2 as suggested by the software NumXL (URL: http://www.spiderfinancial.com/products/
numxl) which was used in the experiment. Since there is no standard lag length that can 
be proven most effective to remove serial correlation from the residuals, some additional 
test is required for assuring the reliability of stationary test results.

A popular complementary test to ADF is Kwiatkowski–Phillips–Schmidt–Shin (KPSS) 
test. KPSS tests in econometrics are utilized for testing a null hypothesis which defines the 
statistical properties of a time series to be stationary. KPSS concerns an observable time 
series that is trend stationary or stationary around a deterministic trend. The time series 
is considered as the composite of deterministic trend, stationary error, and random walk. 
Lagrange multiplier test of the hypothesis is used as the core of the KPSS for verifying if the 
random walk contains zero variance. The test is based on the residuals from the ordinary 
least square regression:

 

where yt is the time series, c is a constant that is followed by a trend tr, εt is the standard 
error of the regression. The hypothesis is tested against the Lagrange multiplier Λ as follow:
 

(10)Δyt =
(
c + tr

)
+ � ⋅ yt−1 + �t

(11)𝜏
𝛼
=

�̃�

𝜎(�̃�)

(12)Δyt =
(
c + tr

)
+ � ⋅ yt−1 + �1 ⋅ Δyt−1 + �2 ⋅ Δyt−2 +…+ �n ⋅ Δyt−n + �t

(13)yt = (c + tr) + �t

(14)Λ =
∑
t

R
(
t2
)

N2r0

http://www.spiderfinancial.com/products/numxl
http://www.spiderfinancial.com/products/numxl
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where r0 at frequency zero is an estimator of the residual spectrum, R is a summing function 
of the residuals and N is the sample size. KPSS test is usually to pair with ADF test. By double 
testing with both the stationarity hypothesis and unit root hypothesis, one can distinguish 
times series that are sufficiently informative to ascertain whether they are stationary or 
otherwise. It seems that the KPSS test is not a test that the series is stationary but rather 
that the residual from a deterministic trend is stationary. These two tests complementarily 
look for different aspects of stationarity.

After applying the ADF and KPSS tests on the data-sets, it is confirmed that all the data-
sets used in the experiments are stationary. The test results fall within the acceptable ranges 
of statistics (all the alpha values are below zero, and p-value is lower than 5%) which point to 
the hypothesis that the time series are stationary. The stronger rejection of the null hypoth-
esis that there is a unit root when the alpha gets more negative implies the time series is 
stationary. The trend types being tested are (Const + Trend) and (Const + Trend + Trend2), 
which are corresponding to (c + tr) and (c + tr + tr2), respectively, as in Equations (9) and 
(13). Significance level of 5% is used, which is a probability threshold below which the 
alternative hypothesis will be rejected. The p-value is the probability, under which the null 
hypothesis that test statistics are at least as extreme as observed by KPSS. The stationary 
test results are tabulated as follow:

  Stock index   REITs      
test ^aoRD ^hsi ^itlms ^Xu100 aus hK italy turkey
const + trend
α by aDf −2.2 −2.3 −2.1 −2 −3.7 −2.2 −2.3 −2.4
p-value by KPss 1.3% 1.1% 1.7% 2.4% .0% 1.2% 1.1% .9%
const + trend + trend^2
α by aDf −2.2 −2 −2.2 −2.7 −6 −2.4 −2.2 −3
p-value by KPss 1.5% 2.3% 1.5% .4% .0% .8% 1.4% .1%

After confirming the time series data are stationary, we adopted the following procedures:

(1)    Stochastic, KD
Step 1. Calculate the Raw stochastic value (RSV):

where Cn is the closing price of day n; Hn is the highest price within day n; Ln is the lowest 
price within day n.

Step 2. Calculate the K and D value of the current day:

If there is no value of the day before the K and D, then K and D will be 50 for the first 
calculation.

RSV =
Cn − Ln

Hn − Ln

× 100%

Kn =
1

3
RSVn +

2

3
Kn−1

Dn =
1

3
Kn +

2

3
Dn−1
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(2)    Moving Average, MA

where Pn is the previous n days’ closing prices.

(3)    Bias

where Cn is the closing price of day n; An is the average price for n days.

(4)    Relative Strength Index, RSI
Step 1. Calculate the UPn and the DNn:

Step 2. Calculate the RSI of current day:

where SUPn is the sum of the upward change for previous n days; SDNn is the sum of the 
downward change for previous n days.

(5)    Williams’ Oscillator, W%R

where Cn is the closing price of day n; Hn is the highest price within day n; Ln is the lowest 
price within day n.

(6)    Momentum Index, MTM

where: Cn is the closing price of day n. PCn is the closing price for previous n days

(7)    Moving Average Convergence and Divergence, MACD
Step 1. Calculate the Demand Index (DI):

MAn =
P1 + P2 +⋯ + Pn

n

Biasn =
Cn − An

An

UPn =
SUPn

n

DNn =
SDNn

n

RSIn =
UPn

UPn + DNn

× 100

W%R =
Hn − Cn

Hn − Ln

× 100

MTMn = Cn − PCn

DI =
H + 2 × C + L

4
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where H is the highest price of current day; C is the closing price of current day; L is the 
lowest price of current day.

Step 2. Calculate the different days of exponential moving average

where α = 2/(1 + no of days of moving average)
For example, for the 12 days EMA, the α is equal to 2/(1 + 12)=2/13
Step 3. Calculate the DIF

Step 4. Calculate the MACD

where α = 2/(1 + no of days of moving average)

3.6. Dynamic Hurst exponent (R/S and V statistics analysis procedure)

With regard to R/S and V statistics calculation procedure, we shall illustrate by using HSI 
as an example. After we take log of the time series prices data, there are 758 observations. 
Then, we use the R/S analysis to calculate log(R/S) of log(n) and calculate Hurst exponent. 
The V statistics is the average of R/S divided by the square root of n. We used Vn and log(n) 
to plot a V statistics analysis chart, it determines whether aperiodic cycles exist. Once the 
aperiodic cycles are determined, the dynamic Hurst exponents can be calculated. We then 
use the dynamic Hurst exponents to do the GMDH network to do forecast. There are  
18 input variables in the neural network (Tables 1 and 2).

EMA(n) = EMA(n − 1) + � × (DI(n) − EMA(n − 1))

DIF = 12 days EMA − 26 days EMA

MACD(n) = MACD(n − 1) + � × (DIF(n) −MACD(n − 1))

Table 1. stock market data-set input variables.

Variables (Xk) Explanation
X1–X5 Pt, Pt−1, Pt−2, Pt−3, Pt−4 Past 5 days closing price
X6, X7 %K, %D 9 days stochastic oscillator, KD
X8, X9 ma6, ma12 6 days and 12 days moving average
X10, X11 6Bias 3Bias 6 days and 3 day Bias Ratio
X12 Rsi6 6 days Relative strength index
X13 W%R12 12 days Williams %R
X14, X15 mtm6 mtm(ma6) 6 days momentum index and its moving average
X16, X17 macD9 Dif9 9 days moving average convergence / Divergence and difference
X18 Dynamic hurst exponent X days Dynamic hurst exponent (refer the aperiodic cycle from each 

data-set)

Table 2. Real estate market data-set input variables.

note: output variables are the next day Reits.

Variables (Xk) Explanation
X1–X5 Pt, Pt−1, Pt−2, Pt−3, Pt−4 Past 5 days Reits
X6, X7 ma6, ma12 6 days and 12 days moving average
X8, X9 6Bias 3Bias 6 days and 3 days Bias Ratio
X10 Rsi6 6 days Relative strength index
X11, X12 mtm6 mtm(ma6) 6 days momentum index and moving average
X13 Dynamic hurst exponent X days Dynamic hurst exponent (refer the aperiodic cycle from each 

data-set)
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With regard to the input variables of the real estate market data-set, since the real estate 
market data do not have the open, highest and lowest price, some technical indicators such 
as Stochastic, W%R, MACD cannot be calculated. Finally there are only 13 input variables 
presented in the neural network as below (Table 3):

The GMDH shell software neural network retains 80% of the data as the training set with 
remaining 20% used to test the validity of GMDH neural network model. For example, there 
are 759 data points in HSI index from September 2010 to September 2013. After excluding 
the first 68 data for dynamic Hurst Exponent calculation, 691 data points remained. The 
last 20% (138 data points) of HSI index is then used for forecast validation.

4. Experiments and evaluation

4.1. The dynamic Hurst exponent analysis

Cotter and Stevenson (2008) studied REITs’ long memory properties by observing the auto-
correlation function (ACF) with plots over 100 lags for the returns series and discovered that 
there was a lack of dependence which was in line with previous findings of financial returns 
that were believed to be independently distributed with nearly white noise. The absence of 
long-range correlations in the walk profile displays properties of random walk with H = .5. 
In contrast, values of H > .5 indicate a decrement will be followed by a decrement and an 
increment is likely to be followed by an increment. If H < .5, an increment is very likely to 
be followed by a decrement, showing the existence of oscillatory behavior (Méndez-Acosta, 
Hernandez-Martinez, Jáuregui-Jáuregui, Alvarez-Ramirez, & Puebla, 2013).

Granero, Segovia, and Pérez (2008) suggested that market long memory implies the fail-
ure of EMH. The Hurst exponent is the most important indicator to confirm the existence 
of market memory. It can be calculated by R/S analysis. Shyu, Ke, and Tai (2009) used the 
R/S method to calculate the Hurst exponent so that different levels of long memory and 
aperiodic cycle in each country were found. The empirical results indicated that developing 
countries’ stock markets had larger Hurst exponent and longer aperiodic cycle than the 
developed stock market. Unlike this paper, we used the aperiodic cycle to calculate the 
dynamic Hurst exponent, and put back the results to the GMDH network for forecasting.

When Hurst exponent declines suddenly, direction of market prices reverses. The last 
lowest point of Hurst exponent changes the stock market signal. The dynamic Hurst expo-
nent records the memory of earlier market trend, higher value indicates stronger memory. 
Nevertheless, when the moving Hurst exponent issued a signal, market price may not reach 
the lowest and there is high chance to reverse. Investor may “forget” the early market signal 

Table 3. Data description.

Data Type name Sample period no. of data
no. of data 

actually used no. of training no. of testing
stock index ^aoRD sep 2010–sep 2013 760 692 554 138

^his sep 2010–sep 2013 759 691 553 138
^itlms sep 2010–sep 2013 766 697 558 139
^Xu100 sep 2010–sep 2013 753 660 528 132

Reits aus mar 2010–mar 2014 1045 941 753 188
hK oct 2011–mar 2014 588 523 418 105
italy Jul 2012–mar 2014 421 362 290 72
turkey may 2010–mar 2014 962 856 685 171
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when market is reversed. The corresponding moving Hurst exponent reaches a low value. 
After the aperiodic cycle was calculated, the dynamic Hurst exponent is shown in the fol-
lowing Figures with dynamic Hurst and ^AORD.

4.2. GMDH neural network simulation result

Neural network with and without dynamic Hurst are trained. Several classical forecasting 
algorithms (SES, DES and ARIMA) and BPNN compare with the GMDH method. Powered 
by Oracle Crystal Ball (Release 11, 32-bits) and GMDH shell (3.5.7) was used as an opti-
mized solver. Weka machine learning software (3.7.11) was used to install the time series 
forecasting package for back-propagation in neural network4. With regard to SES, DES, 
ARIMA, we only used the output variable for forecasting. BPNN used 80% of the data for 
training and 20% for testing, 500 epochs were used to train through one hidden layer as only 
one variable was included in our study. The GMDH model includes the technical indicators 
to the neural network for time series prediction. There are 17 technical indicators (X1–X17), 
X days dynamic Hurst exponent (X18) for the stock market data-set, 12 technical indicators 
(X1–X12) and X days dynamic Hurst exponent (X13) in real estate market data (Table 4).

We evaluate the forecasting accuracy by using Mean Absolute Percentage Error 
(MAPE). Similar to most of the neural network forecasting method, data in machine 
learning like GMDH neural network divide the data into training and validation set for 
forecasting. Training aimed to reduce the error on the training set, it was terminated 
when the validation set’s error began to rise (Hong & Fan, 2016). GMDH shell uses 
80% of data for training and the remaining 20% to validate the GMDH neural network 
model. Mean Absolute Percentage Error (MAPE) calculates the average absolute error 
between actual and forecast values and it is valid measure to study the forecast accu-
racy of the forecasting algorithm in percentage (Ghasemi, Shayeghi, Moradzadeh, & 
Nooshyar, 2016). The equation of MAPE is:

where At is the actual value and Ft is the forecast value.
After training neural network by GDMH shell, results are compared with traditional 

forecasting algorithms as shown in Table 9. GMDH neural network recorded the smallest 
MAPE from the last 20% testing data among all the REITs and stock indices. GMDH neural 
network with dynamic Hurst exponent improved the forecasting results in Australia, Hong 
Kong, and Turkey stock indices since it had the lowest MAPE (error). In REITs, GMDH 

MAPE =
1

n

n∑
t=1

|||||
At−Ft
At

|||||
× 100%

Table 4. Descriptions of various forecasting method.

Abbreviation Descriptions of various forecasting method
ses single exponential smooth, optimized by crystal Ball
Des Double exponential smooth, optimized by crystal Ball
aRima aRima model, optimized by crystal Ball
BPnn Back-propagation neural network, experimented by Weka time series analysis
GmDh with Dynamic hurst use table3.1 X1–X17 or table3.2 X1–X12 and X days/periods dynamic hurst exponent in 

GmDh neural network, optimized by GmDh shell
GmDh without Dynamic hurst use table3.1 X1–X17 or table3.2 X1–X12 in GmDh neural network, optimized by GmDh 

shell
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neural network with dynamic Hurst exponent improves the forecasting results of Hong 
Kong, Italy, and Turkey REITs. One interesting result showed that despite Italy stock index 
was closest to random walk according to Table 6 (Hurst exponent at .5028), GMDH with 
Hurst forecasting method still outperformed the other methods.

Figures 6–13 show the forecast time series plot according to classical model and GMDH 
neural network model. The red line (GMDH with dynamic Hurst) and green dashed line 
(GMDH without dynamic Hurst) show predicted values.

4.3. Brief comments and overall performance

In Hong Kong Heng Seng index, Hurst exponents are significantly greater than .5, i.e. their 
volatility was persistent and could be predicted by historical data. In Australia and Turkey, 
the Hurst exponent was significantly less than .5, i.e. their volatility has anti- persistent 
and also can be predicted by historical data. Nevertheless, Italy stock index is not signifi-
cantly different from .5, i.e. the dynamic Hurst exponent does not affect the GMDH neural 
network.

Besides, Hong Kong and Turkey REITs’ Hurst exponents are significantly higher than .5 
which means their volatility can be predicted by historical data. The Australia and Italy Hurst 
exponent are significantly less than .5, which means that their volatility has anti-persistent 
characteristic which can be predicted by historical data. The GMDH neural network has 
the best result with the lowest MAPE value in all REITs data. Besides, the GMDH neural 
network with dynamic Hurst exponent is better than pure GMDH neural network. GMDH 
neural network without dynamic Hurst exponent achieves the lowest MAPE in Australia 
real estate market. The Hurst exponent analysis has extremely important research value.

Table 6 shows the best method of forecasting according to the lowest MAPE. GMDH 
neural network is the best with the lowest MAPE for all the time series data. Therefore, 
GMDH neural network model helps analyze the stock and real estate market. Moreover, 
dynamic Hurst exponent improves the forecasting accuracy in most of the research models, 
such as Australia, Hong Kong, and Turkey stock indices time series and Hong Kong, Italy 
and Turkey REITs indices time series. If the Hurst exponent is not significantly different 
from .5, such as Italy stock market, then the dynamic Hurst has no effect. Furthermore, if 
the Hurst exponent is significantly different from .5, but the difference of Hurst between Vn 
is too small, such as Australia REIT data, using dynamic Hurst exponent cannot improve 
the GMDH neural network, other than enhancing the GMDH neural network result.

Type A: Hurst exponent >.5 indicates a decrement will be followed by a decrement and 
an increment is likely to be followed by an increment in the future.

Type B: If Hurst exponent <.5, an increment is very likely to be followed by a decrement, 
showing an oscillatory behavior.

Type C: close to random walk

5. Implication of the study

Our results prove that GMDH neural network achieve better forecasts results than the tra-
ditional DES, SES and ARIMA methods among all the stock and REITs indices. Moreover, 
dynamic Hurst exponent in GMDH neural network has smaller MAPE then we only 
use GMDH neural network method in Australia, Hong Kong, and Turkey stock indices 
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prediction validation. The results suggest that the investors can use the GDMH neural 
network to increase forecasting accuracy of REITs and stocks prices. As investors can use 
this information to forecast the changes in stock and REITs prices that can help investors 
reap more profit. It is also of academic value as this method is the first of its kind which 
applied GMDH with Hurst in REITs and stock prices’ forecasting.

6. Long-term memory of stocks and REITs

Second, with regard to the long-term memory in stocks and REITs, the past and future 
data volatility is irrelevant for future prediction if the Hurst exponent is .5. The time series 
is in random walk. If the value ranges from .5 to 1, previous high price often lead to high 
price in the future. Nevertheless, if the Hurst exponent falls below .5, that implies there is 
a switch in high and low price in the long run.

In our research study, the Hurst exponent of Hong Kong Hang Seng index is .5314: if 
the last day’s stock price rose, the probability of this stock price rising in the future will be 
53.14%. Similarly, the Hurst exponent of Australia All Ordinaries Index is .4805, which 
means that if the last index rises, probability of this index dropping in the future is 51.95% 
(= 1–.4805). The Hurst exponent of Turkey Borsa Istanbul 100 Index is .4708, which means 
that if the last index record rises, probability of this index dropping in the future is 52.92% 
(= 1–.4708).

The Hurst exponent of Hong Kong REIT index is .5948, which means that if the previ-
ous day’s Hong Kong REIT rises, the probability of Hong Kong REIT continuing to rise in 
future is 59.48%. The Hurst exponent of Turkey REIT index is .5183, which means that if 
the previous day’s Turkey REIT rises, the probability of Turkey REIT continuing to rise in 
future is 51.83%. The Hurst exponent of Australia REIT is .4395, which means that if the 
last REIT rises, the probability of REIT value dropping in the future is 56.05% (= 1–.4395). 
And the Hurst exponent of Italy REIT is .4243, which means that if the last REIT rises, the 
probability of REIT value dropping in the future is 57.57% (= 1–.4243).

The existence of fractional Brownian suggests that changes in the present stock / REITs 
prices depend on the previous records in prices. Our R/S analysis method shows that major-
ity of the stocks and REITs prices prove the existence of fractional Brownian motion which 
reject EMH except Italy stock index. We expect that the difficulty in forecasting the Italy 
stock prices can be explained by the characteristics of stock prices changes in the Hurst 
exponent results. The Hurst exponent of Italy stock is far below .5 that means the previous 
drop often leads to an increase in prices and vice versa. The ever-changing prices imply that 
(1) it is closer to random walk without a clear trend, (2) long-term memory does not exist. 
All these increase the difficulty in forecasting. That also coincides with our GMDH neural 
network simulation results: if the times series is less volatile, the dynamic Hurst exponent 
has the best forecasting results. Besides, whether the forecasting series are stocks or REITs 
indices however, may not be an important factor that affects the forecasting accuracy.

7. Conclusion

In this paper, we aim to study the existence of long-term memory in stocks and test if 
GMDH neural network with Hurst have better forecasting ability as compared to tradi-
tional forecasting methods. We also compare and contrast the differences between REITs 



PACIFIC RIM PROPERTY RESEARCH JOuRnAL  145

and stock indices. The results showed that GMDH neural network with Hurst provided 
the lowest forecasting errors among the majority of REITs and stocks time series except 
REITs indices in Australia. Our research also confirmed that long-term memory existed 
for most of the indices except Italy stock index which was close to random walk with Hurst 
exponent record of .5028. While Australia and Hong Kong’s previous increment’s impact 
on the next increment were the same in REITs and stocks indices, Italy and Turkey was 
different according to Hurst exponent’s results. It implies that the long-term co-memory 
in REITs and stocks may not be the same in every single circumstance despite previous 
research in Canada was the same for REITs and stocks. Despite Italy stock index showed 
that it was closest to random walk (least deviation from .5 in Hurst exponent), GMDH 
with Hurst forecasting method still outperformed the other methods. The results provide 
an interesting future study direction on whether GMDH with Hurst can be used to forecast 
the time series in the so-called random walk nature.

Notes

1.  http://www.gmdhshell.com/
2.  https://finance.yahoo.com/
3.  https://www.google.com/finance
4.  http://wiki.pentaho.com/display/DATAMINING/Time+Series+Analysis+and+ 

Forecasting+with+Weka
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Appendix

The Hurst exponent analysis

After calculating R/S, all data-set’s Hurst exponents are estimated. According to these Hurst values, 
the correlation function C(t) = 22H−1–1 and fractal dimension D = 2−H (Table 5).

In Table 5, the Hurst exponents of Hong Kong Hang Seng Index is significantly greater than .5. 
The Italy FTSE Italia All Share Index is not significantly different from .5. The Hurst exponents of 
Australia All Ordinaries Index and Turkey Borsa Istanbul 100 Index are significantly less than .5, i.e. 
the Australia and Turkey stock market index exhibits anti-persistence fractional Brownian motion. 
The upward trend in Australia and Turkey stock market may have decreasing trend in future. All 
data except the Italy FTSE Italia All Share Index are significantly different from .5 according to the 
T statistic, i.e. they do not perform according to EMH .

Regression between log(R/S) and log(n)’s R-square and adjusted R-square achieve over than 90% 
explanatory power. The correlation function C(t) tests the independence in time series. The fractal 
dimension D examines whether the time series is random. When H = .5, correlation function C(t) 
is equal to zero, fractal dimension D is equal to 1.5. The Hurst of Australia All Ordinaries Indices 

http://reitinfo.com/
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and Turkey Borsa Istanbul 100 Indices are less than .5, i.e. the correlation function C(t) is negative, 
The fractal dimension D is greater than 1.5. Other correlation function C(t) are positive, the fractal 
dimension D is less than 1.5. Italy stock market’s data are random in nature, because their correlation 
coefficient is .00387, Australia, Hong Kong ,and Turkey stock market are less random with correlation 
coefficients at −.02674, .04455, and −.03968. In REITs, Turkey REITs data are more random in nature, 
because their correlation coefficient is −.02568, Australia, Hong Kong, and Turkey REITs data are less 
independent and random, because their correlation coefficients are −.08040, .14037, and −.09957.

Aperiodic cycle analysis

All stock market and REITs’ results are shown in Figures 14–21. The turning point of Vn can be found 
from the chart. When V statistic mutates, the Vn line has become horizontal or downward trend from 
upward trend. It means that the original memory at this point disappeared. By checking each interval 
Vn’s turning point, the length of aperiodic cycle can be estimated.

^AORD data-set displays a significant drop of Vn at n = 69. The V statistics increases as n increases. 
Let n = 68 as the demarcation, we calculate the Hurst exponent for each segment. The Hurst expo-
nent before the 69 days is .57094 and after the 69 days is .46641. Therefore, n = 68 denotes long-
term memory vanishing point of the time series data. After 68 days, the Hurst exponent is smaller  
(Figure 22). In HSI, there is a significant drop of Vn at n = 69. The Hurst exponent before 69 days is 
.60679 and after 69 days is .50089 (Figure 23). In ITLMS, there is significant drop of Vn at n = 70. 
The Hurst exponent before 70 days is .57916 and after 70 days is .46417 (Figure 24). In XU100 data-
set, there is a significant drop of Vn at n = 94. The Hurst exponent before 94 days is .61906 and after 
94 days is .34100 (Figure 25).

The Australia REITs experiences a significant drop of Vn at n = 105. The Hurst exponent before and 
after 105 days is .49232 and .49041, respectively (Figure 26). Hong Kong REITs’ V statistics experiences 
a significant drop of Vn at n = 66 as n decrease. The Hurst exponent before and after 66 days is .66780 
and .57428 (Figure 27). Italy REITs experiences a significant drop phenomenon of Vn at n = 60. The 
Hurst exponent before and after 60 days is .58255 and .24587 (Figure 28). Turkey REITs recorded 

Table 5. all methods’ maPe result of last 20% forecast validation.

note: figures in bold refers to forecasting methods with the lowest errors.

SES DES ARIMA BPnn GMDH with Hurst GMDH without Hurst
^aoRD maPe 2.2674 7.0280 2.2721 8.1226 .7161 .7381
^hsi maPe 6.4349 6.8164 6.4351 3.0215 .8585 .8706
^itlms maPe 3.9009 3.8642 3.9084 6.0959 1.0581 1.0581
^Xu100 maPe 7.2180 7.6464 7.2201 8.8756 1.3970 1.6292
aus maPe 3.1314 4.4299 3.2208 1.8204 .5343 .5336
hK maPe 2.2060 2.0387 2.2134 1.1579 .3078 .3495
italy maPe 9.9282 9.8251 9.9246 7.4970 1.5836 1.7162
turkey maPe 8.6897 8.9522 8.6886 6.0488 1.1468 1.2454

Table 6. summary result of all data-set.

Types of data Data Hurst exponent Implications Aperiodic cycle Best methods
stock indices ^aoRD (australia) .4805 B 68 GmDh with hurst

^his (hong Kong) .5314 a 68 GmDh with hurst
^itlms (italy) .5028 c 69 GmDh with / without 

hurst
^Xu100 (turkey) .4708 B 83 GmDh with hurst

Reits indices aus .4395 B 104 GmDh without hurst
hK .5948 a 65 GmDh with hurst
italy .4243 B 59 GmDh with hurst
turkey .5183 a 106 GmDh with hurst
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a significant dropped of Vn at n = 107. The Hurst exponent before and after 107 days is .61559 and 
.48264. After 107 days, the Hurst exponent is smaller (Figure 29 and Table 6).

In summary, there is aperiodic cycle from the stock market and real estate market data. The aver-
age aperiodic cycle of stock market is 63.75 days and the average aperiodic cycle of REITs market is 
83.5 days (Table 7–9).

Table 7. the hurst exponent results.

*cannot reject the null hypothesis.

Intercept Hurst exponent R-square
Adjusted  
R-square

Correlation 
coefficient Fractal dimension

^aoRD .067668 .480450 .918065 .917845 −.02674 1.51955
^his .06601 .531442 .925218 .925017 .04455 1.46856 
^itlms .005630 .502788* .960819 .960714 .00387 1.49721
^Xu100 .194728 .470794 .897971 .897695 −.03968 1.52921
aus .10798 .439538 .826926 .826590 −.08040 1.56046
hK −.22276 .594751 .965539 .965419 .14037 1.40525
italy .21645 .424341 .800477 .799498 −.09957 1.57566
turkey .03358 .518287 .959115 .959029 .02568 1.48171

Table 8. the aperiodic cycle of different data-set.

Data Hurst before Vn Hurst after Vn Difference
aoRD .57094 .46641 .10453
hsi .60679 .50089 .10590
itlms .57916 .46417 .11500
Xu100 .61906 .34100 .27806
aus .49232 .49041 .00191
hK .66780 .57428 .09352
italy .58255 .24587 .33668
turkey .61559 .48264 .13295

Table 9. the aperiodic cycle of different data-set.

Stock Real estate

Index Hurst exponent Aperiodic cycle REITs Hurst exponent Aperiodic cycle
aoRD .480450 68 aus .439538 104
hsi .531442 68 hK .594751 65
itlms .502788 69 italy .424341 59
Xu100 .470794 93 turkey .518287 106
average .506326 74.5 average .597016 83.50
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Figure 7. ^hsi prediction comparison.

Figure 6. ^aoRD prediction comparison.
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Figure 8. ^itlms prediction comparison.

Figure 9. ^Xu100 prediction.
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Figure 11. hong Kong Reit index prediction comparison.

Figure 10. australia Reit index prediction comparison.
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Figure 12. italy Reit index prediction comparison.

Figure 13. turkey Reit index prediction comparison.
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Figure 15. the ^hsi time series with the 68 days dynamic hurst.
note: fixed n = 68, the dynamic hurst and ^hsi are plotted.

Figure 16. the ^itlms time series with the 69 days dynamic hurst.
note: fixed n = 69, the dynamic hurst and ^itlms are plotted.

Figure 14. the ^aoRD time series with the 68 days dynamic hurst.
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Figure 17. the ^Xu100 time series with the 93 days dynamic hurst.
note: fixed n = 93, the dynamic hurst and ^Xu100 are plotted.

Figure 18. australia Reit index time series with the 104 days dynamic hurst.
note: the corresponding dynamic hurst with Reits dataset are plotted.

Figure 19. hong Kong Reit index time series with the 65 days dynamic hurst.
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Figure 21. turkey Reit index time series with the 106 days dynamic hurst.

Figure 22. the australia all ordinaries index R/S analysis vs. V statistics chart.

Figure 20. italy Reit index time series with the 59 days dynamic hurst.
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Figure 23. the hong Kong hang seng index R/S analysis vs. V statistics chart.

Figure 24. the italy ftse italia all share index R/S analysis vs. V statistics chart.
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Figure 26. australia Reit index R/S analysis vs. V statistics chart.

Figure 25. the turkey Borsa istanbul 100 index R/S analysis vs. V statistics chart.
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Figure 27. hong Kong Reit index R/S analysis vs. V statistics chart.

Figure 28. italy Reit index R/S analysis vs. V statistics chart.
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Figure 29. turkey Reit index R/S analysis vs. V statistics chart.
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